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Global health challenges



Global health challenges

1. Obesity and Chronic diseases

2. Aging

3. Drug resistance, Hospital acquired infections

and medical errors

4. Global warming and pollution

5. Health inequality and healthcare finance

6. Infectious and/or zoonotic diseases and viruses

7. Stress and sleep aponia

8. Relationships and social health
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Future healthcare technologies

1. Artificial Intelligence in Healthcare: AI/ML

predictive/prescriptive analytics and digital twin

2. Sensors: Smart wearables, cyborg, satellites, wireless

sensor networks and IoTs

3. 5G/6G: Cloud computing, telemedicine and Mobile

health

4. Robotics (computer vision and natural language

processing)

5. Gene editing, genomics, epigenomics proteomics and

metabolomic

Enabler: Globalization and economic growth



Why Artificial Intelligence in Healthcare?



Human Intelligence
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Artificial Intelligence

https://www.chirpbooks.com/audiobooks/paradise-lost-by-john-milton
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Cognitive biases



Forbidden fruit of the 

knowledge
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Forbidden fruit of the 

knowledge

https://www.pngkit.com/bigpic/u2q8t4r5r5q8r5r5/



Forbidden fruit of the 

knowledge

http://www.hdwallpaperspulse.com/apple-logo-pictures.html



Our family system: One of 

the most complex systems

https://www.storyboardthat.com/storyboards/baptist_snniper/the-gift-of-the-magi-story-elements

https://www.storyboardthat.com/storyboards/baptist_snniper/the-gift-of-the-magi-story-elements
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Our family system: One of the 

most complex systems

Requires

1. Human Behavioural Modelling

2. Modelling the effect of others’ Behaviour (using 

game theory),

3. Modelling of cultural, social, economical, 

financial and environmental effects (Big data 

analytics),

4. Most difficult: modelling spontaneous 

(uncorrelated) changes in sentiments,

5. Reality vs perception.
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Reality vs Perception



NASDAQ100
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Reality vs Perception



Reality vs Perception

Source: https://medium.com/ivymobility-developers/algorithm-a168afcd3611

https://medium.com/ivymobility-developers/algorithm-a168afcd3611


Optimism bias in COVID-19
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Other biases



Cognitive biases

• Confirmation bias

• Anchoring bias

• Bandwagon effect

• Halo effect

• Availability bias/heuristic

• Ostrich effect

• Recency/serial position effect

• Choice-supportive bias



Cognitive biases

• Fundamental attribution error

• Outcome bias

• Illusory correlation bias

• Dunning Kruger effect

• Exponential-growth bias

• Magical Beliefs

• Conspiracy Theory Beliefs

• Overconfidence



Cognitive biases

• Conformity bias

• Authority bias

• Loss-aversion bias

• False causality bias

• Action bias

• Self-serving bias

• Framing bias

• Ambiguity bias



Cognitive biases

• Strategic misrepresentation

• Projection bias

• Pro-innovation bias

• Status-quo bias

• Feature positive effect

• Bounded Rationality

• Certainty Effect

• Cognitive Dissonance



Cognitive biases

• Commitment

• Decision Fatigue

• Decoy Effect

• Time Discounting / Present Bias

• Diversification Bias

• Ego Depletion

• Elimination-By-Aspects

• Hot-Cold Empathy Gap
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• Hot-Cold Empathy Gap



Cognitive biases

• Endowment Effect

• Fear of Missing Out (FOMO)

• Gambler’s Fallacy (Monte Carlo Fallacy)

• Habit

• Hedonic Adaptation

• Herd Behaviour

• Hindsight Bias (Knew-It-All-Along Effect)

• IKEA Effect



Cognitive biases

• Less-Is-Better Effect

• Licensing Effect

• Mental Accounting

• Naive Diversification

• Over justification Effect

• Pain of paying

• Partitioning

• Peak-End Rule



Cognitive biases

• Priming

• Procrastination

• Ratio bias

• Reciprocity

• Regret aversion

• Representativeness heuristic

• Scarcity

• Social proof



Cognitive biases

• Sunk Cost Fallacy

• Zero Price Effect



Our Economy:
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Our Economy:

A Complex System
More demand then supply = More profit

More profit = More attractive industry

= More players

= More supply than demand

= Less price = Less profit

= Some will leave the market with loss

= More demand than supply
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Our healthcare system: 

A complex system

Private healthcare:

• Some patients want cheap healthcare

• Some patients want best (luxurious) 

healthcare

• Health providers want maximum profit

• maximum profit = maximum hospital visits

• = maximum readmissions

• + maximum hospital duration of stay
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Private healthcare:

• At the time of COVID-19 pandemic:

• Should they make more hospitals and 

employ more health professionals?

• Can they make more hospitals and 

employ more health professionals 

instantly?
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Our healthcare system: 

A complex system

Public healthcare:

• Everyone gets the same healthcare

• Health providers want minimum cost

• Minimum cost 
= Limited resources

= more readmissions + waiting list

= longer waiting list



Our healthcare system: 

A complex system

https://fineartamerica.com/featured/hospital-waiting-room-mark-thomasscience-photo-library.html

https://fineartamerica.com/featured/hospital-waiting-room-mark-thomasscience-photo-library.html
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Our healthcare system: 

A complex system

Public healthcare:

• Corruption

• Health providers want minimum cost

• Minimum cost 
= Limited resources

= longer waiting list

= Poor healthcare

= Public outcry

= Preference
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Public healthcare:

• Even more resources = no waiting lists

• Short waiting list = longer hospital stay

minimum readmissions

more patients

underutilization

misuse

more cost

Some waiting lists
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Our healthcare system: 

A complex system
Public healthcare:

• Optimum resources = Proper planning

= Continuously adding 

resources (if population is 

increasing/changing)

= Resource requirement 

forecasting 

= Admission rate estimation

= Length of stay estimation



Our healthcare system: 

A complex system

Public healthcare:

• At the time of COVID-19 pandemic:

• Should they make more hospitals and 

employ more health professionals?

• Can they make more hospitals and 

employ more health professionals 

instantly?



Our healthcare system: 

A complex system

Do we prepare ourselves for such a 

pandemic?

• Do we keep a hospital bed booked for us?

• Do we keep resources for homecare?



Covid-19



Complex Systems



Covid-19

We need an efficient mechanism/system for

Acquiring/collecting, analysing, and sharing

information from different domains of the

complex system for decision making

to fight COVID-19 and monitor the progress.

I.e. we need Artificial Intelligence in

Healthcare.



Covid-19

Covid-19 is not just a medical problem but

It is also a

1. Social problem

2. Political problem

3. Cultural problem

4. Community problem

5. Communication problem

6. Transportation problem



Covid-19

7. Management problem

8. Supply chain problem

9. Administration problem

10.Education problem

11.Financial problem

12.Economical problem

13.Behavioural/ psychological problem

14.Geological problem



Some COVID-19 Statistics



COVID-19: Deaths per Million 

vs. Human Development Index

HTTPS://OURWORLDINDATA.ORG/MORTALITY-RISK-COVID 



COVID-19: Deaths per Million 

vs. Human Development Index

HTTPS://OURWORLDINDATA.ORG/COVID-VACCINATIONS



COVID-19: Deaths per Million 

vs. GDP per Capita
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vs. GDP per Capita

TOTAL CONFIRMED COVID-19 DEATHS PER MILLION VS GDP PER CAPITA, JAN 6, 2021 
HTTPS://OURWORLDINDATA.ORG/GRAPHER/TOTAL-CONFIRMED-DEATHS-OF-COVID-19-PER-MILLION-PEOPLE-VS-GDP-PER-CAPITA?YSCALE=LINEAR&TIME=LATEST



COVID-19: Cases per Million vs. 

GDP per Capita

CUMULATIVE CONFIRMED COVID-19 CASES PER MILLION VS. GDP PER CAPITA, JAN 6, 2021: REF: HTTPS://OURWORLDINDATA.ORG/GRAPHER/TOTAL-CONFIRMED-CASES-OF-COVID-19-PER-MILLION-PEOPLE-VS-GDP-PER-CAPITA



COVID-19: Cases per Million vs. 

GDP per Capita

CASE FATALITY RATE OF COVID-19 VS. MEDIAN AGE OF THE POPULATION: REF: HTTPS://OURWORLDINDATA.ORG/GRAPHER/CASE-FATALITY-RATE-OF-COVID-19-VS-MEDIAN-
AGE?XSCALE=LOG&YSCALE=LOG&COUNTRY=AFG~ALB~DZA~AGO~ARG~ARM~ATG~AUS~AUT~BHS~AZE~BHR~BGD~BRB~BLR~BEL~BLZ~LVA~LBN~LSO~LBR~LBY~LTU~LU
X~MDG~MWI~MYS~MDV~MLI~MLT~MRT~MUS~MEX~BEN~BTN~BOL~BIH~BWA~BRA~BRN~BGR~BFA~BDI~KHM~CMR~CAN~CPV~CAF~TCD~CHL~CHN~COL~COM~COG~
CRI~CIV~HRV~CYP~CZE~COD~DNK~DMA~DOM~ECU~EGY~SLV~GNQ~EST~SWZ~ETH~FJI~FIN~FRA~GAB~GMB~GEO~DEU~GHA~GRC~GRD~GTM~GIN~GNB~GUY~HTI~HN
D~HKG~HUN~ISL~IND~IDN~IRN~IRQ~IRL~ISR~ITA~JAM~JPN~JOR~KAZ~KEN~OWID_KOS~KWT~KGZ~LAO~MDA~MNG~MNE~MOZ~MAR~MMR~NAM~NPL~NLD~NZL~NIC
~NER~NGA~MKD~NOR~OMN~PAK~PSE~PAN~PNG~PRY~PER~PHL~POL~PRT~QAT~ROU~RUS~RWA~KNA~LCA~VCT~SMR~STP~SAU~SEN~SRB~SYC~SLE~SGP~SVK~SVN
~ZAF~KOR~SSD~ESP~LKA~SDN~SUR~SWE~CHE~TJK~TZA~THA~TLS~TGO~TTO~TUN~TUR~UGA~UKR~ARE~GBR~USA~URY~UZB~VUT~VNM~YEM~ZMB~ZWE



COVID-19: Deaths per Million 

vs. Extreme Poverty

CASE FATALITY RATE OF COVID-19 VS. MEDIAN AGE OF THE POPULATION: SOURCE: HTTPS://OURWORLDINDATA.ORG/
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COVID-19: Deaths per Million 

vs. Human Development Index

CASE FATALITY RATE OF COVID-19 VS. MEDIAN AGE OF THE POPULATION: SOURCE: HTTPS://OURWORLDINDATA.ORG/
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COVID-19: Median Age Vs 

Total Deaths Per Million

CASE FATALITY RATE OF COVID-19 VS. MEDIAN AGE OF THE POPULATION: SOURCE: HTTPS://OURWORLDINDATA.ORG/
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COVID-19: Percentage of 65+ 

Vs Total Deaths Per Million

CASE FATALITY RATE OF COVID-19 VS. MEDIAN AGE OF THE POPULATION: SOURCE: HTTPS://OURWORLDINDATA.ORG/
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COVID-19: Life expectancy Vs 

Total Deaths Per Million

CASE FATALITY RATE OF COVID-19 VS. MEDIAN AGE OF THE POPULATION: SOURCE: HTTPS://OURWORLDINDATA.ORG/
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COVID-19: Diabetes Prevalence 

Vs Total Deaths Per Million

CASE FATALITY RATE OF COVID-19 VS. MEDIAN AGE OF THE POPULATION: SOURCE: HTTPS://OURWORLDINDATA.ORG/
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COVID-19: Cardiovascular Death 

Rate Vs Total Deaths Per Million

CASE FATALITY RATE OF COVID-19 VS. MEDIAN AGE OF THE POPULATION: SOURCE: HTTPS://OURWORLDINDATA.ORG/
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COVID-19: Male Smokers Vs Total 

Deaths Per Million

CASE FATALITY RATE OF COVID-19 VS. MEDIAN AGE OF THE POPULATION: SOURCE: HTTPS://OURWORLDINDATA.ORG/
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COVID-19: Female Smokers Vs 

Total Deaths Per Million

CASE FATALITY RATE OF COVID-19 VS. MEDIAN AGE OF THE POPULATION: SOURCE: HTTPS://OURWORLDINDATA.ORG/
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COVID-19: Vaccination rate Vs 

Total Deaths Per Million

CASE FATALITY RATE OF COVID-19 VS. MEDIAN AGE OF THE POPULATION: SOURCE: HTTPS://OURWORLDINDATA.ORG/
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COVID-19: Fully Vaccination rate 

Vs Total Deaths Per Million

CASE FATALITY RATE OF COVID-19 VS. MEDIAN AGE OF THE POPULATION: SOURCE: HTTPS://OURWORLDINDATA.ORG/
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COVID-19: Total Vaccination rate 

Vs Total Deaths Per Million

CASE FATALITY RATE OF COVID-19 VS. MEDIAN AGE OF THE POPULATION: SOURCE: HTTPS://OURWORLDINDATA.ORG/
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COVID-19: Hospital beds per thousand 

Vs Total Deaths Per Million

CASE FATALITY RATE OF COVID-19 VS. MEDIAN AGE OF THE POPULATION: SOURCE: HTTPS://OURWORLDINDATA.ORG/
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COVID-19: Deaths per Million 

vs. GDP per Capita

TOTAL CONFIRMED COVID-19 DEATHS PER MILLION VS GDP PER CAPITA, JAN 6, 2021 
HTTPS://OURWORLDINDATA.ORG/GRAPHER/COVID-19-TESTS-DEATHS-SCATTER-WITH-COMPARISONS



Why COVID-19 is dangerous

1. Low IFR (<1%) and CFR (<2%)

2. High incubation period (up to 14 days)

3. High number of asymptomatic cases

4. Spread by droplets (or airborne)

5. Global supply chain

6. The Aviation sector growth

Global Covid-19 Case Fatality Rates
HTTPS://WWW.CEBM.NET/COVID-19/GLOBAL-COVID-19-CASE-FATALITY-RATES/
WHO (2020):Transmission of SARS-CoV-2: implications for infection prevention precautions

https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions

https://www.cebm.net/covid-19/global-covid-19-case-fatality-rates/
https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions


Economic impact and suicide

1. 5.2% contraction in global GDP in 2020.

2. Might result into 10-15% increase in 

depression, anxiety disorder and suicide 

rates

3. Might result in 2-5 million extra suicides in 

2021

4. More than 10 million suicides in future 

due to COVID-19



The problem



Who is spreading COVID-19

1. Those who do not know COVID-19 exists

2. Those who know but do not believe

3. Those who unknow about protection 

measures

4. Those who know but do not

Global Covid-19 Case Fatality Rates
HTTPS://WWW.CEBM.NET/COVID-19/GLOBAL-COVID-19-CASE-FATALITY-RATES/
WHO (2020):Transmission of SARS-CoV-2: implications for infection prevention precautions

https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions

https://www.cebm.net/covid-19/global-covid-19-case-fatality-rates/
https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
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Hospital bed occupancy and 

requirements forecasting

Collaborative partners: Nanyang Technological University 

and Tan Tock Seng Hospital, Singapore.

Approach: Markov modelling, reinforcement learning

Data: Tan Tock Seng Hospital, Singapore. 



Hospital bed requirements forecasting 

using satellite, weather & air quality 

data 
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Introduction

• Life expectancy has increased with improvement in health 

services and standard of living.

• Higher demand to the healthcare resources

• Healthcare challenge is to continue providing the same 

quality of care
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Introduction

• Healthcare system facing major problems

• Lack of beds in hospitals and

• Lack of other hospital resources.
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Introduction

• To work with these problems the healthcare system needs :

• An efficient way to forecast the resources required

• To minimize the cost of care while maintaining the quality of 

care.
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Introduction

• When modelling the healthcare system it would help:

• To better understand the process for the design of polices 

that can improve the quality of care

• To ensure the optimal utilization of the available resources
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Coxian phase type distributions

 Among popular choices to fit spell length of stay data.

 Provide a simple interpretation of fit for the length of stay 

data.

 Parameter estimation is easier than other phase type 

distributions.
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Phase 1 Phase 2 Phase 3 Phase n

Absorbing phase n+1

Entrance
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Hospital care system as a 

Markov chain

acute treatment rehabilitative long stay

Death or discharged from hospital

Patient flow in the stroke care system can be modelled as an n

state Markov process with Coxian phase type distributions

Admission

to hospital
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Coxian phase type distributions

State 1
acute

State 2
treatment

State 3
rehabilitative

State n
long stay

State n+1 (absorbing state)

Death or discharged from hospital

Admission

to hospital
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Coxian phase type distributions

 A process can start only in the first state (state 1). 

 Sequential transition rate is k. 

 Also transition rate from any state k to the absorbing state 

n+1 is μk.
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Coxian phase type distributions

 The PDF for the duration before absorption:

 where the initial state probability distribution

 absorption probabilities 

( ) ( )f expt t=p Q q

=(1 0 0 0 0)p

( )
T

1 2 2  .n n   −=q



Dr Lalit Garg

Coxian phase type distributions

 And the transition matrix


1 1 1

2 2 2

11 1
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( )0 0 0 0

0 0 0 0
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Coxian phase type distributions

 The likelihood function:



 where N is the total number of patients in the care system.

 ( )
1

exp
N

i

i

l t
=

= p Q q
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Coxian phase type distributions

 The loglikelihood function 

 Or 

 where

 ( )( )
1

log exp  .
N

i

i

L t
=

= p Q q

1

( )
N

i

i

L f t
=

=

 ( )( ) log expi if t t= p Q q
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average of the Bayesian information criterion and the Akaike
information criterion with a small sample size correction.


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Weighted-Average 

Information Criterion
 WIC (Weighted-Average Information Criterion) is a weighted 

average of the Bayesian information criterion and the Akaike
information criterion with a small sample size correction.

 The splitting criteria based on the WIC combines the strengths of 
both the AIC and the BIC it works well with small and large 
sample sizes and in the situation where sample size is not known.
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Weighted-Average 

Information Criterion
 The performance of WIC was compared with several other 

popular criteria in the study and the results showed that WIC is 
very reliable.

2(((log( ) -1) log( ))(  - (  - 1))   2 (   (   1)))
2      .

(2   (log( )(  - (   1))))(  - (   1))

d N N N d N N d
WIC L d

N N N d N d

+ + +
=− + +

+ + +
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Survival tree

2 43
(Leaf)

1

5 76
(Leaf)

8 109
(Leaf)

11 1312
(Leaf)

14 1615
(Leaf)

17 1918
(Leaf)

20 2221
(Leaf)

…..….. ….. ….. ….. ….. ….. …..
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Survival trees
• Decision trees in survival analysis

• A type of classification and regression trees

• Constructed by recursively partitioning the given dataset in

to subsets based on some splitting and selection criteria.
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Phase type survival trees
• A powerful non-parametric method of clustering survival

data for prognostication

• To determine importance and effect of various covariates

(such as patient’s characteristics)

• Their interrelation on patient’s survival, treatment outcome,

disease risk, disease progress or hospital length of stay
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Phase type survival tree
• Each node of the survival tree is separately modeled by phase

type distributions

• It combines the merits of both phase type distributions and

survival trees.

• Reduces the dimensionality of data and explains the

variations in the data.
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Tree construction
 Two steps

 Growing: splitting a node into child nodes

 Selection: determining if a node is terminal node. If it is not

then selecting the best possible partition by exploring all

possible splits.
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Tree growing
 Growing: by recursively partitioning into sub groups by the

covariates based on some splitting criteria.

 At each node apply one covariate at a time and repeat this with

other covariates.
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Tree growing
 Splitting criteria: maximizing either within node

homogeneity or between node separation.

 We used splitting criteria to maximize within node

homogeneity based on improvement ofWIC functions
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Tree growing
 A covariate a can have any of the l values such that

 The loglikelihood of node a is

 Or

1 2

1

    .
l

a a al ai

i

N N N N N
=

= + ++ =

1 2

1 2

1 1 1 1 1

( ) ( ) ( ) ( )
aj a a al

N N N Nl

iaj ia ia ial

j i i i i

L f t f t f t f t
= = = = =

= = + + +   

1 2

1

 .
l

a a al ai

i

L L L L L
=
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Tree growing
 Similarly,WIC of node a is

1 2

1

 .
l

a a al ai

i

WIC WIC WIC WIC WIC
=

= + + + =



Dr Lalit Garg

Node selection
 For each possible split of a node, record the total WIC after

the split.

 The split which maximizes the total WIC of sub-groups is 
determined as follows:

 WICmax = max(WICa, WICb,..……,WICl)
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Node selection
 If WICmax is greater than WIC of the node before the split, 

select the split with WIC equal to WICmax else record the 
node as a terminal node. 
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Node selection
 If WICmax is greater than WIC of the node before the split, 

select the split with WIC equal to WICmax else record the 
node as a terminal node. 

 Terminal node: A terminal node is the node at which
within node homogeneity cannot significantly be improved
by any possible split.
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Dataset
 To evaluate the model we used the discharge dataset from the 

Emergency department at the Mater Dei Hospital Malta of 
all patients discharged in 2011-2012.
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Dataset
 We used covariates that represent the patient characteristics:

 Age

 Gender

 District

 Source of Admissions
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Dataset
 For the length of stay : 

 The continuous covariate was the patient’s age 

 Three categorical covariates Gender, District and Source of 

Admission.
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Dataset
 Categorical covariate data was divide in three groups.

 The cut points of the age are:

 1 to 40,

 41 to 70 and

 71 and over.

 Patients with 0 age at admission were omitted from the data.
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Dataset
 The gender covariate has two different values that are 

Female and Male.

 The district covariate has six different values that are 

the geographical districts of Malta.

 Source of admission is from where the patient was 

admitted and has five different covariates.

 Each cluster was given a group number for running the 

Coxian Phase fittings.
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Dataset
 For the admissions: 

 The categorical covariate was the district of the patient and 
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Dataset
 For the admissions: 

 The categorical covariate was the district of the patient and 

 The categorical covariates are the age and the gender.
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Dataset
 For the admissions: 

 The categorical covariate was the district of the patient and 

 The categorical covariates are the age and the gender.

 Each value in the covariate is given a group number to run 

the Coxian phase fittings for each group.
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Dataset
 Daily and Monthly Admission Values:

 Sun.
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LOS-Phase type Survival tree

Node Covariate Covariate Value

Total 

Number of 

Patients

WIC
Mean 

LOS

Number 

of phases
Total WIC

Gain in 

WIC

Level 1

1 

Root 

Node

All Root Node 64439 351604.66 6.8411 6 351604.66 -

Age

1 to 40 20631 87222.35 4.1304 6

341295.6 10309.141 to 70 22600 122877.8 6.7443 5

71 + 21208 131195.4 9.5813 5

District

South 22237 121077.72 6.756 5

351775.15 -170.49

Central 19480 107177.13 6.9864 4

West 8423 46460.1 7.0515 5

North 13542 72716.7 6.6032 4

Gozo 539 3227.25 8.3358 5

Unknown 218 1116.25 5.5 4

Source

Elderly Home 1925 11775.05 9.4732 6

351078.46 526.2

Home 61356 332501.72 6.7339 6

Labour Ward 2 32.84 4.5 6

Other (Gov Hospital, 

Private, Mental and 

Abroad)

1060 6297.08 8.4632 6

Police Custody 96 471.77 4.7604 2

Gender
Female 32886 179393.48 6.8672 6

351637.51 -32.85
Male 31553 172244.02 6.814 5
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LOS-Phase type Survival tree
Node Covariate Covariate Value

Total Number 

of Patients
WIC

Mean 

LOS

Number 

of phases

Total 

WIC

Gain in 

WIC

Level 3

10 (Age 

41 to 

70, 

Female)

All Age 41 to 70, Female 9088 49410.24 6.817 4 49410.24 -

District

41 to 70, South, F 3164 17051 6.8587 6

49148.34 261.9

41 to 70, Central, F 2782 15094.21 6.8724 5

41 to 70, West, F 1123 6118.53 6.9154 5

41 to 70, North, F 1933 10357.31 6.5525 3

41 to 70, Gozo, F 55 366.03 9.9454 1

41 to 70, Unknown, F 31 161.25 4.9678 3

Source of 

Admission

41 to 70, Elderly 

Home, F
81 561.03 12.4445 3

49396.46 13.78

41 to 70, Home, F 8835 47791.27 6.7268 4

41 to 70, Labour Ward, 

F
1 3.89 7 1

41 to 70, Other (Gov 

Hospital, Private, 

Mental and Abroad), F

170 1038.88 8.8529 4

41 to 70, Police 

Custody, F
1 1.39 2 1
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LOS-Phase type Survival tree

Node Covariate Covariate Value
Total Number 

of Patients
WIC

Mean 

LOS

Number 

of phases

Total 

WIC

Gain in 

WIC

Level 3

12 (Age 

71 +, 

Female)

All Age 71 +, Female 11578 72543.24 9.9719 5 72543.24 -

District

71 +, South, F 3663 22859.81 9.8444 6

72219.66 323.58

71 +, Central, F 3880 24104.55 9.8023 6

71 +, West, F 1736 11040.79 10.4919 4

71 +, North, F 2242 13837.2 10.0589 6

71 +, Gozo, F 40 287.23 12.825 1

71 +, Unknown, F 17 90.08 4.8235 1

Source of 

Admission

71 +, Elderly Home, F 1257 7655.41 9.4121 4

72532.89 10.35
71 +, Home, F 10093 63415.04 10.0396 6

71 +, Other (Gov 

Hospital, Private, 

Mental and Abroad), F

228 1462.44 10.057 4
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LOS-Phase type Survival tree
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Admissions Phase-Type Survival Tree 

Construction

Node Covariate
Covariate 

Value

Total 

Admissio

ns

WIC Mean
Number 

of Phases 

Average 

WIC

Total 

WIC

Gain in 

WIC

Level 1

1 (Root 

Node)

All Root Node 32277 3171.43 89.43 22 3171.43 3171.43 -

Age

1 to 40 10386 2561.57 29.45 10 853.86

2576.47 594.9641 to 70 11244 2590.39 31.81 10 863.46

71 + 10647 2577.45 30.17 10 859.15

Gender
Female 16510 2793.52 44.2 10 1396.76

2811.39 360.04
Male 15767 2829.26 46.23 10 1414.63

District

South 11211 2581.18 31.72 10 430.2

1756.39 1415.04

Central 9690 2491.79 27.55 10 415.3

West 4270 2051.09 12.7 10 341.85

North 6774 2289.19 19.56 10 381.53

Gozo 289 895.58 1.79 6 149.26

Unknown 43 229.51 1.12 10 38.25
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Admissions Phase-Type Survival Tree 

Construction

Node
Covariat

e

Covariat

e Value

Total 

Admissio

ns

WIC Mean
Number 

of Phases 

Average 

WIC

Total 

WIC

Gain in 

WIC

Level 3

8 (South, 

1 to 40)
Gender

Female 2263 1817.71 7.2 5 50.49
94.97 17.71

Male 1518 1601.38 5.16 5 44.48

9 (South, 

41 to 70)
Gender

Female 1602 1617.75 5.39 5 44.94
94.31 18.11

Male 2413 1777.52 7.61 7 49.38

10 (South, 

71 +)
Gender

Female 1804 1680.7 5.94 5 46.69
91.78 17.34

Male 1611 1623.45 5.41 5 45.1

11 

(Central, 

1 to 40)

Gender

Female 1761 1719.87 5.82 5 47.77

89.34 16.18
Male 1191 1496.32 4.26 5 41.56

12 

(Central, 

41 to 70)

Gender

Female 1325 1565.73 4.63 5 43.49

91.16 17.21
Male 1942 1716.2 6.32 6 47.67

13 

(Central, 

71 +)

Gender

Female 1934 1725.28 6.3 5 47.92

92.36 18.68
Male 1537 1599.83 5.21 5 44.44

14 (West, 

1 to 40)
Gender

Female 820 1357.36 3.25 4 37.7
69.44 18.49

Male 506 1142.3 2.39 4 31.73

15 (West, 

41 to 70)
Gender

Female 565 1200.36 2.55 4 33.34
70.41 16.41

Male 840 1334.26 3.3 4 37.06
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Admissions Phase-Type Survival Tree 

Construction

Node
Covariat

e

Covariat

e Value

Total 

Admissio

ns

WIC Mean
Number 

of Phases 

Average 

WIC

Total 

WIC

Gain in 

WIC

Level 3

16 (West, 

71 +)
Gender

Female 908 1387.43 3.49 4 38.54
71.95 18.17

Male 631 1202.62 2.73 4 33.41

17 (North, 

1 to 40)
Gender

Female 1304 1563.15 4.57 4 43.42
81.14 15.86

Male 882 1357.83 3.42 4 37.72

18 (North, 

41 to 70)
Gender

Female 959 1411.44 3.63 4 39.21
84.06 17.54

Male 1469 1614.66 5.02 5 44.85

19 (North, 

71 +)
Gender

Female 1125 1488.1 4.08 4 41.34
81.41 17.05

Male 1035 1442.69 3.84 4 40.07

20 (Gozo, 

1 to 40)
Gender

Female 64 323.82 1.18 10 8.99
16.17 12.16

Male 50 258.44 1.14 10 7.18

21 (Gozo, 

41 to 70)
Gender

Female 64 323.82 1.18 10 8.99
20.15 9.06

Male 82 401.76 1.23 10 11.16

22 (Gozo, 

71 +)
Gender

Female 24 100.2 1.07 10 2.78
7.27 9.26

Male 35 161.34 1.1 10 4.48

23 

(Unknow

n, 1 to 40)

Gender

Female 13 22.86 1.04 10 0.64

1.89 5.29
Male 14 45.21 1.04 10 1.26
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Admissions Phase-Type Survival Tree 

Construction
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Phase-Type Survival Tree Construction

• The Length of Stay phase-type survival tree has 19 leaf 

nodes and has a total Gain in WIC of 12619.16.
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Phase-Type Survival Tree Construction

• The Length of Stay phase-type survival tree has 19 leaf 

nodes and has a total Gain in WIC of 12619.16.

• The Admissions phase-type survival tree has 34 leaf nodes 

and a total Gain in WIC of 2111.41.
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Prognostication

• Both phase-type survival trees are showing 

• Analysis of the determined patient groups from our dataset.
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Prognostication

• Predictions can be made from the data used to construct 

the Phase-type survival tree

• For the number of admissions by the patient grouping and 
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Prognostication

• Predictions can be made from the data used to construct 

the Phase-type survival tree

• For the number of admissions by the patient grouping and 

• We can predict the LOS of a patient by his/her 

characteristics.
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LOS-Prediction

Gender Age District Source
Admission 

Date

Discharge 

Date

Actual 

LOS

Predicted 

LOS

M 1 South Home 15/12/2012 19/12/2012 5 4.122102

M 67 Central Home 21/12/2012 31/12/2012 11 6.744455

F 86 South Home 18/12/2012 24/12/2012 7 9.960199

F 24 West Home 22/12/2012 24/12/2012 3 4.122102

M 64 South Home 15/12/2012 18/12/2012 4 6.744455

M 77 West Elderly Home 26/12/2012 31/12/2012 6 9.189538

M 16 North Home 20/12/2012 20/12/2012 1 4.122102

F 94 South Home 18/12/2012 20/12/2012 3 9.960199

M 57 Central Home 15/12/2012 19/12/2012 5 6.744455

F 49 Central Home 20/12/2012 21/12/2012 2 6.916771
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Admission Predictions
Admissions Date Group Actual Admissions Predicted Admissions

31/12/2011 41 to 70 Unknown 0 0.04

28/12/2011 1 to 40, South, Male 3 4.15

24/12/2011 1 to 40, Central Males 2 3.28

28/12/2011 1 to 40, West, Males 1 1.39

26/12/2011 1 to 40, North, Males 1 2.45

27/12/2011 1 to 40, Gozo, Males 0 0.14

27/12/2011 1 to 40, Unknown, Males 0 0.04

19/12/2011 1 to 40, South, Females 7 6.30

29/12/2011 1 to 40, Central, Females 3 4.87

30/12/2011 1 to 40, West, Females 2 2.28

28/12/2011 1 to 40, North, Females 5 3.59

24/12/2011 1 to 40, Gozo, Females 0 0.18

24/12/2011 1 to 40, Unknown, Females 0 0.03

28/12/2011 41 to 70, South, Males 12 6.54

19/12/2011 41 to 70, Central, Males 7 5.30

26/12/2011 41 to 70, West, Males 5 2.27

15/12/2011 41 to 70, North, Males 6 2.61
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Admission Predictions
Admissions Date Group Actual Admissions Predicted Admissions

29/12/2011 41 to 70, Gozo, Males 0 0.22

23/12/2011 41 to 70, South, Females 7 4.39

29/12/2011 41 to 70, Central, Females 3 3.63

20/12/2011 41 to 70, West, Females 0 1.59

25/12/2011 41 to 70, North, Females 4 4.02

28/12/2011 41 to 70, Gozo, Females 0 0.18

24/12/2011 71 +, South, Males 8 4.41

30/12/2011 71 +, Central, Males 4 4.16

31/12/2011 71 +, West, Males 1 1.71

17/12/2011 71 +, North, Males 3 2.80

26/12/2011 71 +, Gozo, Males 1 0.10

17/12/2011 71 +, South, Females 4 4.87

16/12/2011 71 +, Central, Females 6 5.15

30/12/2011 71 +, West, Females 3 2.47

16/12/2011 71 +, North, Females 3 3.06

31/12/2011 71 +, Gozo, Females 0 0.07
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Construction of Phase-Type Survival Tree 

showing Effect of Weather on LOS
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showing Effect of Weather on LOS



Dr Lalit Garg

Construction of Phase-Type Survival Tree 
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Construction of Phase-Type Survival Tree 

showing Effect of Weather on LOS
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Phase-Type Survival Tree showing 

Effect of Weather on LOS

 

 

 
1 
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10 11 

Root 

AvgTemp 
11°C-20°C 

MaxTemp 
0°C-10°C 

MaxTemp 
11°C-20°C 

MaxTemp 
21°C-30°C 

MaxTemp 
31°C+ 

AvgTemp 
21°C-30°C 

AvgTemp 
21°C-30°C 

AvgTemp 
31°C+ 

MinTemp 
11°C-20°C 

MinTemp 
21°C-30°C 
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Phase-Type Survival Tree showing 

Effect of Weather on LOS

 Node 2 Node 3
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Phase-Type Survival Tree showing 

Effect of Weather on LOS

 Node 8 Node 9
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Phase-Type Survival Tree showing 

Effect of Weather on LOS

 Node 8 Node 9
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Phase-Type Survival Tree showing 

Effect of Weather on LOS

 Node 10 Node 11
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Phase-Type Survival Tree showing 

Effect of Weather on LOS

• Most significant prognostic factor affecting the patients’ 

length of stay (LOS) is the maximum temperature.
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Phase-Type Survival Tree showing 

Effect of Weather on LOS

• Most significant prognostic factor affecting the patients’ 

length of stay (LOS) is the maximum temperature.

• The average temperature affects the patients’ length of stay 

only when the maximum temperature rises beyond 20ºC.
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Phase-Type Survival Tree showing 

Effect of Weather on LOS

• The minimum temperature does not significantly affect the 

patients’ length of stay.
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Phase-Type Survival Tree showing 

Effect of Weather on LOS

• The minimum temperature does not significantly affect the 

patients’ length of stay.

• Also, the maximum variability in the average temperature 

between one day and the next does not affect patients’ 

length of stay as patients usually stay inside.
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Phase-Type Survival Tree showing 

Effect of Weather on LOS

• These results might be different for different geographic 

regions due to different weather conditions and different 

genetic profile of inhabitants there.
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Phase-Type Survival Tree showing 

Effect of Weather on LOS

 Predictions and Accuracy Tests
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Construction of Phase-Type Survival Tree 

showing Effect of Weather on Admissions
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Construction of Phase-Type Survival Tree 

showing Effect of Weather on Admissions
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Construction of Phase-Type Survival Tree 

showing Effect of Weather on Admissions
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Construction of Phase-Type Survival Tree 

showing Effect of Weather on Admissions
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Construction of Phase-Type Survival Tree 

showing Effect of Weather on Admissions
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Construction of Phase-Type Survival Tree 

showing Effect of Weather on Admissions
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Phase-Type Survival Tree showing 

Effect of Weather on Admissions
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MaxTemp 
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Phase-Type Survival Tree showing 

Effect of Weather on Admissions

• Most significant prognostic factor affecting the number of 

admissions is the maximum variability in the average 

temperature between one day and the next.
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Phase-Type Survival Tree showing 

Effect of Weather on Admissions

• Most significant prognostic factor affecting the number of 

admissions is the maximum variability in the average 

temperature between one day and the next.

• The maximum temperature affects the number of 

admissions only when the average temperature increases by 

1ºC-2ºC than the previous day.
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Phase-Type Survival Tree showing 

Effect of Weather on Admissions

• The minimum temperature and average temperature do not 

affect number of admissions.
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Phase-Type Survival Tree showing 

Effect of Weather on Admissions

• The minimum temperature and average temperature do not 

affect number of admissions.

• These results might be different for different geographic 

regions due to different weather conditions and different 

genetic profile of inhabitants there.
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Phase-Type Survival Tree showing 

Effect of Weather on Admissions

 Predictions and Accuracy Tests
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Accuracy test for all predictions

MSE: Mean Square Error, 

RMSE: Root Mean Square Error, 

MAD: Mean Absolute Deviation

BIAS: Bias
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Hospital care system as 
a markov chain

Phase 1
acute

Phase 2
treatment

Phase 3
rehabilitative

Phase n
long stay

Death or discharged from hospital

Admission

to hospital
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Community care system as 
a markov chain

Phase 1
Dependent

Phase 2
Convalescent

Phase n
Recovered

Death or Re-admission in the hospital

Admission

to hospital
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Conditional phase type 
distribution

Conditional phase type distribution (taken from Marshall et al., 2000a)

Cause 1

Cause 4

Cause 2

Cause 3

Cause 5

Phase 1 Phase 2 Phase 3

Event 1
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Elderly care system as a 
conditional phase type 
distribution model

 

 Hospital 
Phase 1 

Hospital 
Phase 2 
 

Hospital 
Phase n 

 

Admission 

to hospital 

  n-1 

  n 

Community 
Phase 1 

 

Community 
Phase 2 

 

Community 
Phase m 

 
  

 

m 

Re-admission to hospital 

1 2 n 

Discharge to Community 

Death (Absorbing phase) 

1 2 m 

1 2 m-1 
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Sequential pattern mining: Patient 

pathways
Patient’s journey through the care system Also

known as integrated care pathways, multidisciplinary

Pathways of Care, clinical pathways or critical

pathways.

HP2 CP1Death

HP1

HP3 CP1Death

HP2

HP1 CP2Death

HP4 CP1Death
HP1 CP2Death

HP2 CP1Death
HP1 CP3Death

…..….. ….. ….. ….. ….. ….. …..
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8-Phase Markov Model

Acute

1

Treatment

2

Rehabilitative

3

Long stay

4

Dependent

5

Convalescent

6

Recovered

7

Death

8
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An Example: Eight-phase model

Hospital 
Phase 1

Hospital 
Phase 2

Hospital 
Phase 4

Admission

to hospital


 3

  4

Community 
Phase 1

Community 
Phase 2

Community 
Phase 3

  3

Re-admission to hospital

1 2
4

Discharge to 

Community

Death (Absorbing phase)

1 2 3

1 2Hospital 
Phase 3

3

3

Historical dataset* is used

*S.I. McClean and P.H. Millard, “Patterns of length of stay after admission in geriatric 

medicine: an event history approach”, The Statistician, 42(3), 1993, pp. 263–274
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Transition matrix

Transition matrix Q = {qij}=Transition rate (next transition is to

phase j | currently in phase i }
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Transient probability matrix

Associated transient probability matrix A = {aij}, where aij =

Probability {next transition is to phase j | currently in phase i }

and,

1 1 1

1 1 1 1 1 1 1 1 1

2 2 2

2 2 2 2 2 2 2 2 2

1 1 1

1 1 1 1 1 1 1 1 1

2 2 2

2 2 2 2 2 2 2 2 2
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Expected time

The expected time spent in a phase i (when next transition is to

phase j / given that the patient has entered phase i )

( / ) 0
  

0  

ij ij ij

ij

aq ifq
t

otherwise


=
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Expected cost

The expected cost of care in phase i (when next transition is to
phase j / given that the patient has entered phase i )

where, bi is the average per day bed cost in phase i.

( / ) 0
  

0  

i ij ij

ij

bt ift
c

otherwise


=
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Probability of occurrence of a patient 

pathway

where, pathway r is having in total k transitions among various hospital and

community phases and finally death in phase l

ph is the transient probability for the hth transition. (If the hth transition is

from phase i to phase j then ph = aij),

al,(m+n+1) is the probability of death in phase l

,( 1)

1

() = *
k

r h lmn

h

k p a ++

=

 
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 

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where,

th is the expected time spent in the phase before
the hth transition. If the hth transition is from
phase i to phase j then th = tij = time spent in the
phase I

tl,(m+n+1) is the time spent in phase l before death.

Expected duration of a patient 

pathway

,( 1)

1

() = 
k

r h lmn

h

k t t ++

=

 
 + 

 

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Expected total cost of a patient 

pathway

,( 1)

1

() = 
k

r h lmn

h

k c c++

=

 
 + 

 


where,

ch is the expected cost of stay in the phase before

the hth transition. If the hth transition is from

phase i to phase j then ch = cij = time spent in the

phase I

cl,(m+n+1) is the cost of stay in phase l before death.
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Daily resource requirements

On day d:

Number of patients in phase i =

ηi = (number of patients on the day d-1) + (number of patients

entered in phase I on day d) – (number of patients left phase i on

day d)
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Daily resource requirements

In fact, we will calculate the number (ηi) of patients in phase i after every

transition event.

For a transition from phase i to phase j with probability aij

ηi = (1 – aij)*(the number of patients in phase i before the transition)

ηj = (the number of patients in phase j before the transition) + (aij)*(the

number of patients in phase i before the transition)



Dr Lalit Garg

Daily resource requirements

Total daily resource requirement for the given initial population of
patients in various phases

where, ηi(t0) = Given initial number of patients in phase i.

ηi(tgiven) = daily resource requirement at time tgiven for the care system
starting with one patient in phase i (no new admissions).

0

1

( )  ()*( )
n

given i i given

i

t t t  
=

=
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Incorporating new admissions

Number of patients in phase 1 =

η1 = 1 + (the number of patients in the hospital phase 1 before the

new admission)
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Enumerating the pathways

Initialise tmax, λi, μi, νi, αi, βi and γi

ω = patient’s age, Λ = 0.

First pathway = (HP1) with Ρr(k)=1, Δr(k)=0, Ωr(k)=0, Λ = 0

Put the first pathway on the heap. Last phase = l = HP1

Compute: A = {aij}, T = {tij}, C = {cij}

For the first pathway in the heap compute all possible 

transitions (j) from l and put all these new pathways (r) on the heap.

Λ =  Δr(k); ω = ω = (patient’s age) + Λ, 

recalculate λi, μi, νi, αi, βi and γi and the matrix A, T and C.

For each new pathway r: Ρr(k)= ρ(k)*alj, Δr(k)= Δ(k)+tlj, Ωr(k)= Ω(k)+clj

If tmax > Λ Sort the Heap in ascending 

order of Δr(k)

Yes

No

End

Start
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Number of admissions required

For a new hospital

Where B(tgiven) = number of beds available at time tgiven

assuming that there are no patients in the hospital at t = 0.

1

()
Admissions required  per day

(patients in hospital phase )

given

n

i

Bt

i
=

=


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Number of admissions required

For a pre-existing hospital

where, η(tgiven) = the total number of patients still remaining at tgiven for

the initial population of patients in various phases (without any new

admissions).

η'(tgiven)= the total number of patients remaining at tgiven having been

admitted before tgiven (with one admission per day and no initial

population)

()()
Admissions required  per day

'()

given given

given

Bt t

t



−

=
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Interesting patient 
pathways

Phase 1

Phase 8
P=0.1178
D=10.795
C=161.93

Phase 2 Phase 5

Phase 5Phase 3 Phase 1

Phase 8
P=0.0063
D=26.517
C=240.54

Phase 8
P=0.0688
D=21.583
C=269.81

Phase 8
P=0.0016
D=37.293
C=402.19

Phase 8
P=0.0919
D=79.201
C=730.76

Phase 8
P=0.0222
D=37.240
C=348.10

Phase 6

Phase 8
P=0.0231
D=212.88
C=986.02
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Expected cost of care

Expected cost of care
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Data source: S.I. McClean and P.H. Millard, “Patterns of length of stay after admission in geriatric 

medicine: an event history approach”, The Statistician, 42(3), 1993, pp. 263–274 
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Expected bed requirements

Expected bed requirements

0

100

200

300

400

500

0 100 200 300 400 500 600 700 800 900 1000

number of days

n
u

m
b

e
r 

o
f 

b
e
d

s

Hospital bed requirements Community requirements

Data source: S.I. McClean and P.H. Millard, “Patterns of length of stay after admission in geriatric 

medicine: an event history approach”, The Statistician, 42(3), 1993, pp. 263–274 



Dr Lalit Garg

Expected number of patients in each 

hospital phase

Expected number of patients in each hospital phase
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Expected number of patients in each 

community phase
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Survival tree
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Phase type Survival 
tree
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Mixture distribution 
Survival tree
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Splitting criteria used
 MLIC (Maximum likelihood ratio criterion)

 AIC (Akaike Information Criterion)

 AICc (Corrected AIC)

 BIC (Bayesian Information Criterion)

 BICc (Corrected BIC)

 HQIC (Hannan and Quinn Criterion)

 WIC (TheWeighted-Average Information Criterion)
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Maximum likelihood ratio-

based Splitting criteria
 Maximum likelihood ratio criterion

 *df: number of free parameters required to be estimated

1 2

2

1 2MLIC( )-MLIC( )~ ( )df dfdf df p − 

MLIC( ) = -2*Log likelihood.df
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Maximum likelihood ratio 

based Splitting criteria
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AIC based Splitting criteria
 Akaike Information Criterion

AIC( ) = -2*Log likelihood+2* .df df
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AIC based Splitting criteria
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AICc based Splitting criteria
 Corrected AIC

2* *(   1)
AICc( )  - 2*Log likelihood 2*

(  -  (   1))

df df
df df

n df

+
= + +

+
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AICc based Splitting criteria
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BIC based Splitting criteria
 Bayesian Information Criterion

BIC( ) = -2*Log likelihood+ *log( )df df n
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BIC based Splitting criteria
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BICc based Splitting criteria
 Corrected BIC

( )

( )( )
2 *   1

BICc( ) = -2*Log likelihood+ *log( )
    1

df df
df df n

n df

+
+

− +
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BICc based Splitting criteria
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 Hannan and Quinn Criterion

HQIC( ) = -2*Log likelihood+ *log(log( ))df df n

HQIC based Splitting criteria
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HQIC based Splitting 

criteria
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WIC based Splitting criteria
 The Weighted-Average Information Criterion:

2* log( )*(  -  (   1))
WIC( )= *AICc+ *BIC

2* (log( )*( - ( 1))) 2* (log( )*( - ( 1)))

n n n df
df

n n n df n n n df

   +
   

+ + + +   
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WIC based Splitting criteria
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Phase type survival tree for the PAS 

dataset
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Phase type survival tree for the 

PAS dataset
 The total gain in the with in node homogeneity

 The total gain in log-likelihood is 3793.631635 with 35 extra

free parameters (p=1)

( )45679101112( )Total root discardGLLLLLLLLLL=−−+++++++−
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Extended Phase type survival tree
 The phase type survival tree approach can be extended by

further growing the survival tree by partitioning the terminal

nodes into subgroups with more homogeneous patient

pathways based on covariates representing outcome measures

such as discharge destination.
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Extended Phase type survival tree
 Although the information about the discharge destination is

not available at the time of admission, the probability of each

discharge destination can be assigned using cohort analysis.
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Extended Phase type survival 

tree for PAS dataset



Extended Phase type survival 

tree for PAS dataset

G
Total

=163.53 

at the cost of 16 additional free parameters (p<0.000001).
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Decision Support System
This DSS model has been further enhanced and now it can

answer the questions like

✓Bed occupancy and resource allocation: Resource requirements in

various care units at various times

✓Survival Analysis: Possibility of a patient to survive after a particular

duration

✓Budgetary requirements: The expected cost of care after a particular

duration

✓What-if analysis: Forecasting effects of various policies

This model has been presented in CBMS-2008.
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Hospital Capacity Planning

• The transition probability matrix 

() () ()1 1  exp|  exp|  exp .
t

t tt= == = =P Q Q Q
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Hospital Capacity Planning

• The initial distribution of patients (at t = 0) 

 0 0,1 0,2 0, 0, 1  , , , , .n ns s s s+= s
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Hospital Capacity Planning

• If there are no patient admissions, then the expected distribution 

of patients (st) 

0  *  .t

t =s s P
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Hospital Capacity Planning

• If patient admissions (or arrivals) are modeled using a Poisson 

process with a mean arrival rate α. 

0

1

  **  .
t

j

t

j


=

= s s P
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Hospital Capacity Planning

• For the whole care system with R clusters, patient distribution: 

, , ,0

1 1 1

   **  .
R R t

j

wholet rt r r r

r r j


= = =

 
= = 

 
s s s P
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Hospital Capacity Planning
Total expected number of patients in each phase: 
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Hospital Capacity Planning
Expected number of patients of each age group
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Hospital Capacity Planning

Expected number of patients of each stroke type
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Hospital Capacity Planning
Expected daily cost of care (in £s) for all patients 

in each phase of the stroke unit
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Hospital Capacity Planning

Expected daily cost of care (in £s) for all patients of each diagnosis group
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Hospital Capacity Planning

Expected daily cost of care (in £s) for all patients of each age group
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Total expected number of patients discharged to each discharge destinations

Hospital Capacity Planning
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Distribution of patients based on their expected discharge destinations

Hospital Capacity Planning



Dr Lalit Garg

• The total expected daily cost after k days:

• Where cost vector

• where c
i
is the daily cost of care in state i.

 
, * .k whole k = s c

  1 2 3 1 2  ,  ,  , ,  ,  ,  , ,   ,
T

n n n n mc c c c c c c+ + +=  c

Cost of care
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• We attach unit costs* of £164.80 per day for 

stay in acute care (phase 1) and £114.80 

per day for stay in rehabilitative care or long 

stay care (phase 2, phase 3 and phase 4).

• *using estimates from Saka et al. (2009) which is adjusted from 2005.

• Saka O, McGuire A, Wolfe C (2009). Cost of stroke in the United 

Kingdom. Age and Aging. 38: 27-32.

Cost of care
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Expected daily cost of care (in £s) for all patients 

in each phase of the stroke unit

Cost of care
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Expected daily cost of care (in £s) for all patients of each diagnosis group

Cost of care
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Expected daily cost of care (in £s) for all patients of each age group

Cost of care
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Estimated daily cost (in £s) of care of patients for each discharge destination

Cost of care
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Opportunities unlimited

• Discharge delay modelling

• Activity mining in sensor network

• Disease progression modelling (HIV)

• Mental state detection (using fMRI and EEG neuroimages)

• Behavioral analysis
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Discharge delay modelling

• A challenge for healthcare managers and policy makers

• Negatively affects the hospital performance metrics

• Has other serious consequences for the healthcare
system such as affecting patients' health
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Discharge delay modelling
• Phase type distribution survival tree based clustering can be used

for modelling delayed discharge and its effects

• Delayed discharge patients waiting for discharge can be modeled
as a special state in the Markov chain called ‘blocking state’

• A model can be developed to recognize association between
demographic factors and discharge delays and its effects, and to
identify groups of patients who require attention in order to
resolve the most common delays and prevent them from
happening again.
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Discharge delay modelling

Schematic representation of single absorbing state process with 
blocking state
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Activity mining in sensor network
• A sensor network is deployed in the smart home environment to

aid assistive living in self care of patients with Dementia
(Alzheimer's disease).

• Sensors in the sensor network are placed such that each sensor
detects and records (time and duration of) a particular activity
each time it is performed by the user.

• In order to carry out a task, a user performs combination of these
activities in a particular sequence.
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Activity mining in sensor network
• Activity mining or exception mining from the sensor network data

might help in monitoring patient condition, recognising alarming
events, determining care needs, treatment effects and progress
etc.

• The time spent in each activity can separately be modelled by
Coxian PhaseType Distribution.

• A sequential pattern can be defined as a sequence of activities
followed by a user in order to perform a task.
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Activity mining in sensor network
• The values of fitting parameters and dependency parameters can be

estimated using semi-supervised learning.

• Frequent sequential patters satisfying given criteria of interestingness
can be enumerated using an algorithm based on global optimization
(Falk and Soland, 1969, Garg et al. 2009a, Lawler and Wood 1966) or
some other suitable algorithm based on the given criteria.

• We can use the model to recognise unexpected patterns based on given
criteria such as patterns having likelihood less than the given threshold
or pattern with duration more than the given threshold duration.
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Activity mining in sensor network

The schematic representation of extracting possible 
(sequnece) dependencies among activities  
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Activity mining in sensor network

The schematic representation of an activity as a Markov 
chain
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Activity mining in sensor network

 The schematic representation of the task in which each activity is 

separately modelled by Coxian-Phase type distribution.
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Disease progression modelling (HIV)

• Disease progression models can be useful tools for gaining a
systems understanding of the transitions to disease states,
clustering patients based on their disease progression rates and
characterizing the relationship between disease progress and
factors affecting it such as patients profile, treatment, stage at
which disease was diagnosed or stage at which patient was first
institutionalized.

• WHO classifies the progression of HIV disease as a 4 stage
bidirectional process in which a patient’s disease progression stage
is determined by his/her absolute peripheral blood CD4+ T-
lymphocyte count.
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Disease progression modelling (HIV)

• The patient’s immunological status can not only progress
sequentially from stage 1 to stage 4 but also regress or jump from
one stage to the another stage.



• We are developing a novel approach of modelling progression of
HIV disease using phase type distributions.

• Model can then be extended to illustrate how it can be used to
model effects of the affecting factors such as stage at which disease
was diagnosed or stage at which the patient was first
institutionalized.
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Disease progression modelling (HIV)

Stages of HIV progression
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Disease progression modelling (HIV)

Dendrogram of clustering durations of stay data of all patients based
on the HIV disease progression stage at the time of first
institutionalization of the patient
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Disease progression modelling (HIV)

Dendrogram of clustering durations of stay data of all died patients
based on the HIV disease progression stage at the time of first
institutionalization of the patient
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Disease progression modelling (HIV)

Dendrogram of clustering durations of stay in each stage data of all died patients
based on the HIV disease progression stage at the time of first institutionalization
of the patient
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Disease progression modelling (HIV)

Dendrogram of clustering time spent in each stage data of all patients first based
on the HIV progression stage in which time is spent and then each such cluster in
further sub-clustered based on the HIV disease progression stage at the time of
first institutionalization of the patient
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Mental state detection

• Mental state detection (using fMRI and EEG neuroimages)

• To identify the activation regions in fMRI data

• To model brain response to different activities using fMRI 

data
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Mental state detection

• Repeating these with EEG data

• Characterising similar and complimentary information in 

fMRI and EEG data.

• To develop an integrated model for mental state detection 

using both fMRI and EEG data.
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Mental state detection

• fMRI provides Blood Oxygen Level Dependent 

(BOLD) responses in brain.

• Clustering (pattern recognition) whole fMRI data 

using Gaussian Mixture Distributions

• Developing Gaussian Mixture Distribution tree 

using covariates such as subjects, Time, Slices and 

Regions
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Mental state detection

Different slices of a single scan before 

clustering

Different slices of a single scan after 

clustering
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Mental state detection

Different slices of a single scan after 

clustering
Changes in time domain in different slices
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Mental state detection

• Again Clustering whole fMRI data using Phase Type 

Distributions, which gives the phase changes in data on the 

time axis.

• Developing Phase Type Survival tree using covariates such 

as subjects, Slices and Regions
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Mental state detection

• Dirichlet Mixture Model based analysis of probability of 

shift in the given cluster.

• Complete brain model for changes in Blood Oxygen Level

Dependent (BOLD) activity.
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Mental state detection

• Dirichlet Mixture Model based analysis of probability of 

shift in the given cluster.

• Complete brain model for changes in Blood Oxygen Level

Dependent (BOLD) activity.
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Conclusions

• We can use phase-type survival tree analysis to 

• Effectively prognosticate survival data and 
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Conclusions

• We can use phase-type survival tree analysis to 

• Effectively prognosticate survival data and 

• Cluster survival data into groups of patients following 

homogeneous patient pathways.
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Conclusions

• Our models can be used to forecast bed occupancy and the 

requirements.
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Conclusions

• Our models can be used to forecast bed occupancy and the 

requirements.

• The LOS can be predicted at admission by the use of this 

model.
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Conclusions

• Our models can be used to forecast bed occupancy and the 

requirements.

• The LOS can be predicted at admission by the use of this 

model.

• The number of admissions can be forecasted by the 

patients’ characteristics.
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Conclusions

• These models can also be used to characterize the effect of 

weather on LOS and admissions.



Dr Lalit Garg

Conclusions

• These models can also be used to characterize the effect of 

weather on LOS and admissions.

• We can also use these models to predict effect of other 

factors affecting LOS and admissions.
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Conclusions

• These forecasts can help us better designing policies to 

ensure optimal utilization of scarce health resources.
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