

Co-funded by the Erasmus+ Programme of the European Union

ediTec

Training for Medical education via innovative eTechnology

MediTec

Disclaimer: this project has been funded with support from the European commission. This publication [communication] reflects the views only of the author, and the commission cannot be held responsible for any use which may be made of the information contained there in

MediTec Project Number:585980-EPP- 1-2017- 1-DE- CBHE-JP

These lectures were prepared and performed for the students.

we published them in the MediTec websites to wider our educational aims.

With thanks to our team member Prof. Ismail Matalkeh for his efforts.

DRUG INDUCED GASTROINTESTINAL TRACT LESIONS

ISMAIL MATALKA, FRCPath PROFESSOR OF PATHOLOGY SCHOOL OF MEDICINE JORDAN UNIVERSITY OF SCIENCE & TECHNOLOGY

latrogenic Gastrointestinal Tract Lesions

- Pathological lesions induced by the act of the medical professionals
- Increasing in number
- Variable histological changes
- Can mimic some genuine GI lesions
- Can impose further difficulties in accurate Diagnosis
- Awareness of these lesions is important for the practicing pathologists and other physicians

latrogenic Gastrointestinal Tract Lesions

Drugs, enemas and suppositories Surgery related lesions Radiotherapy related lesions Immunosuppression related lesions Radiological media related lesions Laser therapy related lesions Instrumentation related lesions

latrogenic Gastrointestinal Tract Lesions

Drugs, enemas and suppositories Surgery related lesions Radiotherapy related lesions Immunosuppression related lesions Radiological media related lesions *Laser therapy related lesions Instrumentation related lesions

Progress in pathology

Pathological effects of drugs on the gastrointestinal tract: a review

Jeremy R. Parfitt MD, David K. Driman MBChB, FRCPC*

Table 1 Morphological classification of drug-induced pathology of the GI tract

Esophagus		
Erosions and ulcers	KCl, alendronate, doxycycline, quinidine, iron, Kayexalate, Taxol	
Strictures	KCl, alendronate	
Stomach		
Parietal cell hypertrophy and hyperplasia	PPIs	
Fundic gland cysts and polyps	PPIs	
Erosions and ulcers	NSAIDs, KCl, alendronate, iron, Kayexalate, HAIC, SIR, colchicine	
Reactive gastropathy	NSAIDs	
Epithelial atypia mimicking dysplasia	HAIC, SIR, colchicine, Taxol	
Apoptosis	PPIs, colchicine	
Small intestine		
Erosions and ulcers	NSAIDs, KCl, iron, Kayexalate, colchicine	
Strictures	KCl	
Diaphragms	NSAIDs	
Large intestine		
Erosions and ulcers	NSAIDs, KCl	
Strictures	KCl, pancreatic enzyme replacement	
Microscopic colitis	PPIs, ticlopidine, ranitidine, simvastatin, flutamide, carbamazepine,	
Pseudomembranous colitis	Antibiotics PPIs	
Neutropenic enterocolitis	Cytosine arabinoside cisplatin vincristine adriamycin 5-FU mercantopurin	
Malakoplakia	Corticosteroids	
Sigmoid diverticular perforation	Corticosteroids	
Ischemic colitis	Digitalis diuretics BCP ergotamine cocaine Kayexalate glutaraldehyde	
	sumatriptan, α -interferon, dopamine, methysergide, and NSAIDs	
Focal active colitis	NaPO4_NSAIDs	
Epithelial atypia mimicking dysplasia	IV cvclosporin	
Apoptosis	NSAIDs, NaPO4, melanosis, 5-FU	

Pill esophagitis

- Secondary to caustic injury caused by retention of a pill in the esophagus
- Often associated with failure to consume adequate amounts of liquid with tablet or capsule medications
- Supine position before bedtime
- Women & elderly
- Antibiotics (particularly Doxycycline, Tetracycline and Clindamycin)
- NSAIDs, Potassium Chloride, Iron supplements, Ascorbic acid and Alendronate

Pill esophagitis

ALENDRONATE

 Second-generation bisphosphonate, has the potential to cause ulcers within the esophagus and stomach, as well as occasional esophageal strictures.

Bisphosphonates: common cause of oesophagitis and ulceration in the elderly

Alendronate

Gastric Injury : Common Drugs

Drug (or Drug Family)	Predominant Pathology		
NSAIDs/aspirin Alcohol	Erosions Ulcers Reactive gastropathy		
Proton pump inhibitors	Parietal cell hypertrophy and hyperplasia Fundic gland cysts and polyps	Chemotherapy	Mucosal sloughing, enlarged gland cells with normal N/C ratio, gland loss
Iron	Erosions with Fe++ deposits	Hepatic arterial infusion U chemotherapy (HAIC)/ selective internal radiation (SIR) sphere therapy	Ulceration with nuclear atypia; numerous enlarged, bizarre- shaped nuclei with vesicular chromatin, and large, irregular nucleoli
Kayexalate Crys tri ba th wi ex	Crystal deposition (rhomboid or triangular, nonpolarizable, basophilic crystals adherent to		
	the surface epithelium or within sloughed inflammatory exudate)	Bisphosphonates (Alendronate)	Ulcerations (rare in the stomach, most commonly in the esophagus)
Cholestyramine	Crystal deposition (similar to Kayexalate crystals)	Corticosteroids	Possibly increased acid secretion, synergistic ulcerogenic effect when combined with aspirin and NSAIDs
Colchicine/Taxol	Abundant metaphase mitoses (especially "ring" mitoses);		
	epithelial pseudostratification; loss of polarity; increased apoptosis in pit epithelium		

- Most widely prescribed drug in the world (7.7%)
- Age is an added risk factor
 Multiple-drug regimens
 Co-morbidities
 Age-associated changes in pharmacokinetics an pharmacodynamics

NSAIDs and the Stomach

NSAID gastropathy is more common with the following risk factors:

 Use of older NSAIDs such as, in order of decreasing gastric toxicity, Piroxicam, Naproxen, Sulindac, Indomethacin, Diclofenac, and Ibuprofen.

Newer NSIADs such as Nabumetone, Oxaprocin, and Etodolic acid have a much lower gastric toxicity.

- 2. Increasing age
- 3. Female sex
- 4. Concurrent use of other ulcerogenic substances such as corticosteroids and anticoagulants

Scarpignato, Carmelo, Gastroenterology Clinics of North America Copyright © 2010, Elsevier Inc.

NSAIDs and the Stomach

- Acute erosive gastritis
- Reactive gastropathy
- Prepyloric ulcers
- Cicatrizing submucosal fibrosis and prepyloric diaphragm
- Lymphocytic gastritis

Acute Erosive or Haemorrhagic Gastritis

Acute Erosive or Haemorrhagic Gastritis

Reactive Gastropathy

NSAID Gastropathy Manifestations

• Most commonly as dyspepsia and epigastric pain

- Serious consequences such as hemorrhage, chronic peptic ulcers, and perforation can occur
- It occurs within the first few weeks of initiating treatment, but may also be seen with long term use

NSAID Associated Ulcers

• Often multiple

Characteristically prepyloric

 Presence of the features of reactive gastropathy in the immediate adjacent mucosa is a helpful clue to the aetiology.

• The use of NSAID suppositories does not prevent the formation of prepyloric ulcers.

NSAIDs: Lymphocytic Gastritis

PROTON PUMP INHIBITORS (PPIs)

- Hyperplasia and hypertrophy of parietal cells
- Hyperplasia of ECL cells
- Oxyntic gland dilatation
- Parietal cell "snouting"
- Parietal cell cytoplasmic vaculation
- Fundic gland polyps.
- Atrophic gastritis with intestinal metaplasia

Parietal Cell Hyperplasia

Protrusion of parietal cells into the gland lumens, creating Serrated appearance

Omeprazole-Induced changes

Omeprazole-Induced changes

Omeprazole-Induced changes

IRON INDUCED INJURY

Histopathology 2008, 53, 311-317. DOI: 10.1111/j.1365-2559.2008.03081.x

Iron-induced mucosal pathology of the upper gastrointestinal tract: a common finding in patients on oral iron therapy

P Kaye,^{1,2} K Abdulla,¹ J Wood,² P James,¹ S Foley,² K Ragunath² & J Atherton² ¹Department of Cellular Pathology, and ²Wolfson Digestive Diseases Centre, Nottingham University Hospitals and NHS Trust and University of Nottingham, Nottingham, UK

Table 1. Patterns of iron deposition

Pattern	Name	Description
A	Luminal	Iron deposited in a crystalline form, often in a linear fashion over intact or eroded epithelium
В	Lamina propria	Granular iron present, usually in large amounts, within lamina propria and/or granulation tissue with overlying intact or ulcerated epithelium
C	Epithelial	Iron within glandular or surface epithelial cells
D	Reticuloendothelial	Iron in histiocytes within Iamina propria

IRON INDUCED INJURY

Gastric Hemosiderosis

- In patients ingesting large amounts of iron medications
- Hemosiderin pigment in gastric epithelial cells and lamina propria macrophages.
- Little clinical significance and does not indicate that the patient suffers from hemochromatosis.
- The diagnosis of hemochromatosis must only be considered in patients with clinical evidence of the disease.

Gastric Hemosiderosis

Iron Tablet Induced Gastric Erosion

FIGURE 12-47 Mucosal erosion associated with chronic iron tablet intake. The ferrous nature of the pigment in the erosion is highlighted by a Prussian blue stain.

Gastric Hemosiderosis

Gastric injury in Cholchicine

- Pseudostartification
- Loss of polarity
- Prominent
 Metaphase mitosis
- Apoptosis
- Mimic dysplasia

Duodenal Bx in Colchicine Toxicity

Villous blunting and pseudostratification of epithelial nuclei. In the crypts, numerous mitoses are arrested in metaphase, and several assume a characteristic 'ring' pattern.

Duodenum: Chemotherapy-induced Reactive Atypia

NSAID Associated Diaphragm Disease

 Ulceration of the antrum with subsequent cicatrizing submucosal fibrosis and the formation of prepyloric diaphragms

• More commonly seen in the small bowel.

NSAID Associated Diaphragm Disease

NSAID Associated Diaphragm Disease

- Thin fibrous septa that form luminal diaphragm
- Sub mucosal fibrosis
- Reactive changes

Small Intestinal Diaphragm Disease

Small Intestinal Diaphragm Disease

Case Reports

Diaphragm disease of the jejunum

Raji H. Al-Hadithi, Mohammed S. Alorjani, Samir M. Al-Bashir, Ismail I. Matalka Saudi Med J 2009; Vol. 30 (5)

Drug-Induced Small Intestinal Lesions

- Duodenal ulcers = NSAIDs (Davies & Brightmore 1970)
- Jejunal ulcers & Diaphragm Disease = NSAIDs (Lang et al 1988)
- Ileal ulcers = NSAIDs and potassium Chloride (Lang et al 1988 and Leyonmarck & Raf 1985)
- Ileal Inflammation and malabsorption = Mefenamic acide (Marks & Gleeson 1975)

Clinical & Pathological Significance

To be differentiated from Crohn's disease

• To be differentiated from ischemic enteritis

NSAID-associated submucosal fibrous nodules of the small intestine Histopathology, 2007, 51, 405–432.

NSAIDs and Colon

- Ulceration
- Colonic diaphragms
- Microscopic colitis
- Lymphcytic colitis
- Collagenous colitis

(Hudson et al 1993)

(Fellows et al 1992, Pucius et al 1993)

(Kingham et al 1982)

(Lazenby et al 1989)

(Lindstrom 1976)

Potent inducers of apoptosis in the crypt epithelium

(Lee 1993)

Exacerbation of pre-existing UC (Kawai et al 1992)

Lymphocytic Colitis

Collagenous Colitis

Collagenous Colitis

NSAIDs and Analgesic Containing Suppositories

Mucosal damage of the rectum and mucosal prolapse syndrome-like features. (Fenzy & Bogomoletz 1987)

NSAID assoiciated Apoptosis

HOUFA

1000

Focal active colitis

• 45% patients immunosuppressed, 40% taking NSAIDs

• Follow-up (1-74 mths, mean = 25 mths)

acute self-limited infectious colitis (45%)
incidental finding (25%)
irritable bowel syndrome (14%)
ischaemia (10%)
antibiotic associated colitis (5%)

No patient developed CIBD

Focal active colitis

		infective/ self-limited	drugs	IBS	incidental	CIBD
Greenson et al, 1997	USA 42 cases adults	45%	14% (NSAIDS and Abs)	14%	26%	0
Volk et al, 1998	USA 31 cases adults	48%	?	10% ischaemic colitis	29%	13% (all CD)
Xin et al, 2003	USA 31 cases all children	31%	0%	0%	27.6%	31% (8 CD; 1 UC)
Shetty et al, 2011	UK 90 cases adults	19%	24% (NSAIDS and Abs)	33%	8%	16% (10 CD, 2 UC, 2 IBDU

Focal active colitis

- Up to half of all the patients have self-limited disease (likely infective)
- Strong but variable association with drugs (esp NSAIDs, PPIs and antibiotics) in adults
- Occasionally ischaemia, immunosuppression
- About one quarter incidental finding or associated with IBS
- Up to 15% (higher in children) will have CIBD much more commonly CD

Focal Active Colitis

Histopathology 2011, 59, 850-856. DOI: 10.1111/j.1365-2559.2011.04019.x

Focal active colitis: a prospective study of clinicopathological correlations in 90 patients

Sharan Shetty,¹ Salim M Anjarwalla,² Jyoti Gupta,² Chris J W Foy,¹ Ian S Shaw,¹ Roland M Valori¹ & Neil A Shepherd² ¹Departments of Gastroenterology and South West Research Design Service, Gloucestershire Royal Hospital, Gloucester, UK, and ²Gloucestershire Cellular Pathology Laboratory, Cheltenham General Hospital, Cheltenham, UK

- In 24% of patients drugs, especially NSAIDs, were implicated
- Infection was a probable cause in 19%.
- In 14 patients (15.6%), predominantly women, a diagnosis of chronic inflammatory bowel disease was ultimately made.
- A specific subtype of FAC, termed basal FAC, was significantly associated with drugs.

Focal Active Colitis

Focal Active Colitis

HOUFA-NORTH JORDAN

Other Drugs

- Alpha-methyldopa.
- Gold therapy.
- Anthraquinone laxative abuse.
- Long term laxative abuse.
- 5-fluorouracil

- Bowel preparation drugs
- Penicillamine, antibiotics

IBD-like acute colitis Eosinophilic colitis Melanosis Muscular and neural atrophy Acute epithelial necrosis, crypt regeneration, and distortion Infective colitis like Chronic inflammation

Chemotherapy Induced Colitis

- Crypt Loss
- Edema & Hemorrhage of L.P
- Apoptosis & Reg. changes

ANTIBIOTICS

- Pseudomembranous colitis , due to C difficile, has been traditionally considered synonymous with antibioticassociated colitis because antibiotics, most commonly penicillins, clindamycin, cephalosporins, and trimethoprimsulfamethoxazole, account for most of the cases.
- Antibiotic associated hemorrhagic colitis (AAHC) = Acute Colonic ischemia
- Interestingly, only 37% of C difficile cases were prescribed antibiotics within 90 days before diagnosis.

Pseudomembranous colitis

POTASIUM CHLORIDE

 The earliest reports of drug-related GI injury described the effects of oral potassium chloride (KCI), which may cause ulcers and strictures throughout the GI tract.

 Toxicity is mainly due to the irritation of localized high salt concentrations

DRUG INDUCED ISCHEMIC COLITIS

- Digitalis and diuretics
- Estrogens, ergotamine, and cocaine
- Kayexalate
- Glutaraldehyde

DRUG INDUCED ISCHEMIC COLITIS

ENEMAS & LAXATIVES

• Melanosis Coli

Apoptotic Colopathy (Bowel preparation)

Melanosis Coli

Preparation Artifacts

FIGURE 14-55 Enema effect causes edema of the lamina propria with extravasated red blood cells, many of which are lysed.

Mycophenolate Colitis

- Mycophenolic acid (MPA) is an immunosuppressant drug commonly used in patients undergoing solid organ transplant.
- Its pattern of inducing injury in the colon is wellknown and features prominent crypt apoptosis that mimics graft-versus-host-disease.
- The injury pattern in the upper gastrointestinal (GI) tract is less extensively documented

Mycophenolate Colitis

Crypt dropout, atrophy, and distortion Minimal inflammation and reactive crypt changes Apoptosis and GVHD like features

Colchicine Effect in a Colonic Hyperplastic Polyp A Lesion Mimicking Serrated Adenoma

Michael Torbenson, MD; Elizabeth A. Montgomery, MD; Christine Iacobuzio-Donahue, MD, PhD; John H. Yardley, MD; Tsung-Teh Wu, MD, PhD; Susan C. Abraham, MD

Abundant metaphase mitoses. Nuclear pseudostratification. Loss of polarity.

Arch Pathol Lab Med—Vol 126, May 2002

Gastrointestinal Tract Epithelial Changes Associated With Taxanes: Marker of Drug Toxicity Versus Effect

American Journal of Surgical Pathology: March 2008 - Volume 32 - Issue 3 - pp 473-477

FIGURE 1. Prominent ring mitosis seen in the antrum of a patient on taxane chemotherapy.

Gastrointestinal Tract Epithelial Changes Associated With Taxanes: Marker of Drug Toxicity Versus Effect

American Journal of Surgical Pathology: March 2008 - Volume 32 - Issue 3 - pp 473-477

FIGURE 3. Numerous ring forms identified in the appendix.

FIGURE 5. Increased apoptosis within the basal proliferative zone of the esophagus. In this high-power image, many ring mitoses can be seen.

Gastrointestinal Tract Epithelial Changes Associated With Taxanes: Marker of Drug Toxicity Versus Effect

American Journal of Surgical Pathology: March 2008 - Volume 32 - Issue 3 - pp 473-477

FIGURE 6. Notice the "busy" appearance of the gastric neck region with apoptosis (A), an appearance that can mimic epithelial dysplasia. However, in contrast to the pattern in dysplastic lesions, the abnormal area is restricted to the proliferative compartment. Note that the surface consists of a monolayer of mature epithelium (B).

- Cation-exchange resin, used to manage hyperkalaemia in renal failure
- When administered with sorbitol, Kayexalate has been associated with colonic necrosis that may necessitate surgical resection and can result in death.
- Characteristic Kayexalate crystals in the setting of colonic ulceration or perforation. The basophilic crystals have a 'mosaic' pattern that can be appreciated on haematoxylin and eosin stain, but is accentuated on acid-fast, PAS/Alcian blue and Diff-Quik stains

Necrosis of the Gastrointestinal Tract in Uremic Patients as a Result of Sodium Polystyrene Sulfonate (Kayexalate) in Sorbitol: An Under recognized Condition American Journal of Surgical Pathology: January 1997 - Volume 21 - Issue 1 - pp 60-69

Conclusions

- Drugs can produce a wide range of pathology in the upper and lower gastrointestinal tract.
- One must maintain a high index of suspicion for PPIs and NSAIDs as a cause for drug-induced GI pathology.
- Although there is an overwhelming number of drugs that are associated with adverse GI effects, there is a limited number of characteristic injury patterns that should prompt consideration of drug-induced GI pathology.

THANK YOU

Thank You

