

Lecture notes: **Ultrasound diagnostic methods**

Lecturer: Imrich Géci ERASMUS+ MediTec, Training for students

5.9.2019

Department of Medical and Clinical Biophysics - DMCB Faculty of Medicine, Pavol Jozef Šafárik University in Košice

Medical imaging

- Diagnostic testing produces images of organs and tissues within the body for use in diagnosis and treatment.
- Ultrasound
- Positron Emission Tomography (PET)
- Magnetic Resonance Imaging (MRI)
- SPECT
- Fluoroscopy
- Diffraction Enhanced Imaging
- X-rays and Computed Tomopgraphy (CT)

Tendon calcificatio

Outline

- Fundamentals of sound propagation
- Interactions of ultrasound with matter
- Generation of ultrasound
- Effects of ultrasound
- Ultrasound imaging modes A, B, M, Doppler, Color Doppler
- Quantification in ultrasound
- Ultrasound safety and risks

Physical characteristics of ultrasound

Sound - a disturbance in pressure that propagates through a compressible medium.

Mechanical wave motion in a solid or fluid medium that propagates via the action of elastic stresses that involves local compression and expansion of the medium.

The electromagnetic spectrum

Acoustic waves

Pressure waves that propagate through matter via compression and expansion of the material

Generated by compressing and releasing a small volume of tissue

Longitudinal wave

 Particles in the medium move back and force in the same direction that the wave is traveling

Shear Wave

Particles move at right angles to the direction of the wave

- Not used for medical ultrasound imaging

Longitudinal acoustic propagation

The wave propagates as a longitudinal wavefront from the transducer into the propagation medium.

- Consider only 2-D lattice
- The driving force is back and fourth particles oscillates at the same way

Longitudinal acoustic propagation

- **The near field** distance will increase as the frequency increases or the diameter of the transducer increases.
- The far field is characterized by a diverging, conical shaped ultrasound beam of diminishing energy.

Reflection at interfaces

 Reflection is the return of the incident ultrasound, which echoes directly back to the transducer if the angle of incidence is perpendicular of the tissue it hits.

Reflection (normal incidence):

$$\mathsf{R} = \left(\frac{\mathsf{Z}_2 - \mathsf{Z}_1}{\mathsf{Z}_2 + \mathsf{Z}_1}\right)^2$$

Transmission: Intensity of the ultrasound beam transmitted across the interface

$$\mathsf{T} = \frac{2\mathsf{Z}_2}{\mathsf{Z}_2 + \mathsf{Z}_1}$$

Acoustic Impedance

- describes how much resistance an ultrasound beam encounters as it passes through a tissue
- defines the amplitude of the reflected waves at interface

$$Z = \rho \cdot c \qquad \begin{array}{c} \rho - \det \\ c - prc \end{array}$$

ρ - densityc – propagation velocity

Tissue	Impedance (rayls)		
Air	$0.0004 \ge 10^{6}$	-	
Fat	$1.3400 \ge 10^6$	Material	Impedance (M rayls)
Water	$1.4800 \ge 10^{6}$	PZT Composite	10
Liver	$1.6500 \ge 10^{6}$	PZT Ceramics	30
Blood	1.6500 x 10 ⁶	Matching Layer	7
Kidney	1.6300 x 10°	Soft Tierner	17
Muscle	$1.7100 \ge 10^{6}$	DOIL TISSUES	1.7
Skull Bone	7.8000 x 10 ⁶		

Refraction: Snell's Law

 Refraction occurs when the sound waves meet a tissue boundary other than 90 degrees, which is governed by Snell's law.

Attenuation of ultrasound

Energy loss through interactions between ultrasound waves and soft tissues which occurs due to absorption and scattering events.

<u>Absorption</u> – Power deposited in tissue (Heat) <u>Scattering</u> –Ultrasound radiated away from transducer

- The acoustic impedance of the tissue effects reflection of the sound wave.
- Attenuation leads to a decrease in amplitude of the ultrasound signal and is frequency dependent

Consequences of frequency dependent attenuation for imaging:

- Penetration of ultrasound is limited by frequency
 Frequency of ultrasound decreases with
 increasing depth of imaging
- Imaging artifacts Artificial bright & dark regions
- Image acquisition Weak scatterers deep objects unable to detect
- Prevents quantization Echoes via different paths not comparable

Resolution in Ultrasound Imaging

• Axial

- Resolution in propagation direction
- Determined by length of pulse propagating in tissue
- Lateral
- Resolution orthogonal to propagation direction
- Determined by focusing properties of transducer

Compromise between resolution and penetration !

Scheme of the ultrasonic system

Function of transducer

- Transmission mode: converts an oscillating voltage into mechanical vibrations
- Receiving mode: converts backscattered pressure waves into electrical signals

Piezoelectric Material

- Converts electrical voltage to mechanical vibration
- The thickness of the crystal varies with the applied voltage
- When an AC voltage is applied across the crystal, the thickness oscillates at the same frequency of the voltage

Piezoelectric Materials:

- Crystalline (quartz)
- Ceramic (PZT, lead zirconium titanate)
- Polymers (PVDF)

Effects of Ultrasound

Energy transfer

- Energy of the sound waves increases with the square of the frequency, W.cm⁻²
- Thickening and thinning of medium leads to rapid pressure variations up to 10⁵ g overload.
- Absorption of ultrasound in liquids and solids is less in comparison with the absorption in gases.

Intensity scale

Up to 1.5 W / cm ² has bio-positive effects on tissues and therefore USG has medical importance:

- increasing the flow of blood at the injection site
- thereby accelerating healing,
- reducing pain by reducing swelling and edema
- accelerating diffusion in tissues.

Intensity scale

Up to 3 W / cm² the effects of the increase in cytoplasmic vacuoles appear and fat droplets as well. These changes are still reversible.

Intensity greater than 3 W / cm² result in irreversible changes consisting - destruction of the cell nucleus

- protein denaturation by heat
- chemical effects the formation of free radicals
- all effect lead to tissue necrosis

Biological Effects of Ultrasound

Interaction of the object with ultrasound

- Passive interaction intensity scale up to 0,1 W / cm²
- Active interaction intensity scale over 0,1 W / cm²
- Thermal phenomena
- Cavity phenomena
- Mechanical phenomena

Thermal phenomena

Heat generation in ultrasonic field is a typical manifestation of thermal phenomena that occurs as a result of conversion of acoustic energy during a wave absorption by the biological objects.

Heat is generated in biological environments by:

- 1. internal friction
- 2. relaxation processes

1. internal friction

Critical thermal levels

- Over 39,5 °C the embryonic tissues can be damaged
- Over 41 °C tissue of adult human can be damaged
- The amount of the energy/heat conversion
 - 2αI α absorption coefficient of the surrounding tissue
 - I intensity of the ultrasound wave

$$T=\frac{2\propto It}{c_m}+T_0$$

- T_0 beginning temperature
- T final increased temperature
- I intensity of ultrasound
- t time
- c_m thermal capacity of the object

2. relaxation processes

- Occurs between the body and the surrounding environment the exchanges of heat by conduction, convection or radiation.
- If we consider a point source of heat at T₀, then the portion of the heat uniformly lead away according the thermal conductivity K in all directions
- After some time balance between the body temperature and ultrasound heat dissipation is created

Cavity phenomena

- Formation of vacuum tubes (bubbles).
- Gases absorb ultrasonic energy more than the fluid, formed tubes and bubbles absorb considerable heat, which leads to expansion and breaking of the cavities.
- Rezonance cavity bubbles oscillate with the frequency given by the frequency of the ultrasonic wave.
- Collapse cavity bubbles periodically increase the volume and after the critical value they widely collapse.

Mechanical phenomena

Mechanical effects of viscous and radiation forces

- Associated with changes of pressure, tension, stress, expansion, compression and changes of speed and acceleration of particles
- Damage of cell membranes or translation/rotation movement of particles
- in the vicinity of the acoustic interface the micro convection can be created (influence the biological pathways)

Ultrasound safety and risks

- If the live object is located in the ultrasonic field then it leads to their interaction
- Effects of ultrasound on humans and other organisms are not yet sufficiently explored.
- Although ultrasound is considered safe, its effects on living organisms may present some potential risks.
- Guidelines for safe ultrasound scanning

A fundamental approach to the safe use of diagnostic ultrasound is to use the lowest output power and the shortest scan time consistent with acquiring the required diagnostic information.

ALARA principle As Low As Reasonable Achievable

Used intensity or test duration should not exceed what is strictly necessary for obtaining the required diagnostic information !!!

Thermal Index (TI) Mechanical Index (MI)

were introduced to provide the operator with an indication of the potential for ultrasound induced bio-effects.

• TI provides an onscreen indication of the relative potential for a tissue temperature rise.

TIS – Soft Tissue Thermal Index **TIC** – Cranial Bone Thermal Index **TIB** – Bone Thermal Index

• MI provides an onscreen indication of the relative potential for ultrasound to induce an adverse bio effect by a non thermal mechanism such as cavitation.

Ultrasound Imaging Modes

- Ultrasound medical imaging is a non-invasive method that is used to detect and identify diseases, health problems and complications.
- Mainly used measurement methods based on ultrasound echoes from different interfaces of dense environment, ie the interface of two media with different acoustic impedance.
- Diagnostic Ultrasound normally produce waves with a frequency of 1-20 MHz Examination of all organs except the air body cavities

Examination of bone - densitometry

A-mode - Dynamic display

- Oldest, simplest type
- It measures the reflectivity at different depth below the transducer position

Applications:

ophthalmology (eye length, tumors), myocardium infarction

 Frequencies: 2-5 MHz for abdominal, cardiac, brain (lower for brain); 5-20 MHz for ophthalmology, pediatrics, peripheral blood vessels

M-Mode

- Applications: localization of brain midline, liver cirrhosis, heart function
- Display the A-mode signal corresponding to repeated input pulses in separate column of a 2D image, for a fixed transducer position
- Motion of an object point along the transducer axis
 (z) is revealed by a bright trace moving up and down across the image
- Used to image motion of the heart valves, in conjunction with the ECG

B-Mode Display

- Move the transducer in x-direction while its beam is aimed down the z-axis, firing a new pulse after each movement
- Received signal in each x is displayed in a column
- Unlike M-mode, different columns corresponding to different lateral position (x)

Application of B-Mode

- Can be used to study both stationary and moving structures
- High frame rate is needed to study motion
- Directly obtain reflectivity distribution of a slice
- No tomographic measurement and reconstruction is necessary!

Doppler Ultrasound: Basic Concepts

- Ultrasound wave reflected from moving targets
- Frequency shift in received ultrasound wave compared to transmitted wave: Doppler Shift Frequency, f_d
 - Transducer Target (stationary): $f_d = 0$ Target moves towards transducer: - More compressions per unit time: f_d > 0 Target moves way from transducer: - Fewer compressions per unit time: $f_d < 0$

Doppler Imaging

The Doppler effect can be used to detect tissue or organ movement, or blood flow in blood vessels

Two system configuration

- Continuous-wave (CW)
- Pulsed-wave (PW)

Doppler Effect in vessel lumen

Domination by low velocity

Domination by high velocity

Color Doppler

- Provides an estimate of the mean velocity of flow within a vessel by color coding the information and displaying it superimposed on the gray-scale image.
- The flow direction is arbitrarily assigned the color red or blue, indicating flow toward or away from the transducer, respectively.
- Provides a global depiction of blood flow in a region.

Clinical Applications

- Ultrasound is considered safe
- Instrument is less expensive and imaging is fast
- Obstetrics and gynecology
- Musculoskeletal structure
- Cardiac diseases
- Denzitometry
- Contrast agents

Clinical Applications

- Imaging of the vascular capillaries in the organs (capillary volume) and quantification via contrast agent through the vascular system in real time (capillary flow).
- The use of microbubbles, consisting of a container closed in it / adsorbed gas.

