Sensory Systems

Visioin

Training for students of MediTec project

prof. MUDr. Viliam DONIC, CSc.

Physiology of Vision

Department of Human physiology, Medical faculty UPJS in Kosice

Vision

Introduction

- The visual process is the detection and translation of light into static or dynamic mental images.
- Specialised photoreceptor cells, rods \& cones, found within the retina transduce visible light energy into electrical signals that ultimately pass to the visual cortex.
- Rods are responsible for monochromatic night vision and cones for high-acuity daylight colour vision.
- The structure of the eye modifies light before it is detected by the rods \& cones.

What we see

Anatomy of vision

Cross-section of the eye

n
 ophthalmoscope

View of the rear wall of the eye as seen through the pupil with an ophthalmoscope

Fovea: region of sharpest vision

Optic disk (blind spot): region where optic nerve and blood vessels leave the eye

Central retinal artery and vein emer ging from center of optic disk

Retinal layers

Ganglion cell axons form the optic nerve
Light must pass through all layers before reaching rods \& cones

retina

Rods and cones..

Optics \& image formation

- The fovea \& the focal point
- The optic disk and the blind spot
- The retina \& visual acuity
- Image projection
- Pupils \& depth of field
- Optics \& the focal point
- Accommodation
- Refractive errors
- Binocular vision

point

The optic disk is the region where the optic nerve \& blood vessels leave or enter the eye. Light falling on the optic disk is not detected due to the absence of rods \& cones.

The retina \& visual acuity
 - the ability of the eye to resolve detail

Light adapted eye has greatest visual acuity at the fovea Photopic vision (cones)

Dark adapted eye has least visual acuity at the fovea but has greater acuity in the parafoveal region Scotopic vision (rods)

Image projection

The image projected onto the retina is inverted or upside down. Visual processing in the brain reverses the image

Pupils \& depth of field

The diameter of the pupils is controlled by the autonomic nervous system

The pupils regulate the amount of light entering the eye. In bright light they constrict to ca 1.5 mm . In the dark they dilate to ca 8 mm . The increase in the depth of field seen under bright light results from a narrower beam of light focussing on the retina.

Optics \& the focal point

Lens flattened for distant vision

Focal point falls on retina, image in focus

Lens does not change but object moves closer. Light rays no longer parallel.

Focal point falls on beyond retina, image not in focus

The rounder the lens, the shorter the focal length

Lens rounded for close vision

Lens accommodates to correct focal point, image becomes in focus

Accommodation

When the cilary muscles are relaxed, the zonalus pulls tight and keeps the lens flattened for distant vision

The elastic lens is attached to the circular cilary muscles by the zonalus which is made of inelastic fibres

When the cilary muscles contract, it releases the tension on the zonalus and the elastic lens returns to a more rounded shape suitable for near vision

Refractive errors

Hyperopia Hyperopia (corrected with a convex lens)
Long- or far-sighted

Short- or near-sighted

Binocular vision

Eye Movements

Eye muscles

Movement controlled by muscles

Movement is controlled by six muscle groups, innervated by the 3rd, 4th \& 6th cranial nerves.

Movement is driven by visual input and input from the vestibular system. Reflex \& voluntary.

Objects are tracked using both head \& eye movements and keeps the image focussed on the fovea.

Movement are classed as saccades, smooth pursuit and vergence.

Saccadic (high angular velocity) and smooth pursuit movement the eyes move together (conjugate). Vergent movement allows the eyes to converge for close focus.

Nystagmus occurs when saccadic movement is followed by repeated smooth pursuit movement.

Summary

- The eye consists of 3 layers, the sclera, the choroid), and a photoreceptive layer - the retina. Light enters the eye via a clear zone (the cornea) and is focused on the retina by the lens. Light is transduced by rods \& cones.
- The lens can alter its shape to bring near objects into focus. This is controlled by the ciliary muscle, and the zonal fibers.
- The pupil controls the amount of light falling on the retina.
- The capacity of the eye to resolve the detail of an object is its visual acuity. Under photopic conditions, visual acuity is best in the central region of the visual field but, under scotopic conditions, visual acuity in the area surrounding the central region.
- The major problems in image formation are due to

Major parts

- Occipital lobe: visual perception system
- E.g., visuospatial processing, discrimination of movement and colour discrimination

The eye

fovea (central point of focus)

Forming an image

Pinhole camera

camera with lens

Focusing

Muscles relaxed
Lens less spherical

Focus far

Muscles
working
Lens more spherical

Focus near

Components of the eye

- Cornea

Forms image

- Lens

Adjusts focus for near or far objects
Near focus = more spherical lens
(ciliary muscles contracted; more eye strain)

- Near-Point

The lens gets stiff with age
Therefore nearest point of focus recedes

Iris

Controls amount of light entering eye Both pupils controlled together by reflex
No pupil reflex indicates brain damage/pressure

Normal Sight

Normal vision

Problems forming an image

Short and Long Sight
Eye shape and focussing power not matched Therefore image not focused on the retina

Short Sight

Cause Cornea／lens too powerful
Image is focused in front of the retina
Symptom
Close objects clear，far objects always blurred

Distant object

Point of －－－＝ミミミミニ

Short sight

Long Sight

Cause Cornea/lens too weak
Image is focused behind the retina
Symptom Far objects clear, close objects always blurred

How the image is analysed

- Retina

Visual image is formed on the retina and analysed by photoreceptors

- 2 types of photoreceptors - Rods
- and cones

Photoreceptors

Receptor distribution

- The optic nerve

Axons + blood vessels leave eye at one point There are no receptors at this point We should be blind at this point - humans have a "blind spot"

Receptor Distribution

+

Draw a +5 inches to left of a dot, close left eye,
hold stimulus at arm's length,
fixate + ,
bring slowly forward.
Does the dot remain visible?

Receptor Distribution

- The optic disk (blind spot)

Axons + blood vessels leave eye at one point
There are no receptors at this point we should be blind at this point

- Why don't we see our blind spots?

The brain 'fills in' the gap
Can happen even with large areas of blindness
visual axis

Distribution of rods and cones

Receptor Distribution

- Receptor density decreases towards periphery
- Acuity = ability to resolve separate points
- Acuity declines rapidly in periphery
- Therefore scan eyes to see clearly over scene

Limited Resolution

Resolution decreases in periphery

Rods \& cones

Photopic vision

Depends on cones
Day-time light levels
Full range of colours
Cones dense in the fovea
Cone density falls off sharply in periphery
Low sensitivity to light
Quick recovery in dark

Scotopic vision

Depends on rods
Low (moon) light levels
No colours
No rods at the fovea
Rod density rises in near periphery
High sensitivity to light
Slow recovery in dark

Rod distribution

- Rods peak in density 18° from the fovea
- No rods in central fovea
- Rods most sensitive to low light levels so...
- To see dim stars best to look directly slightly to one side

When you keep looking at the image, it seems to be moving before your eyes. That's because the lens of you eye is not perfectly round. You can't see all of the image sharp, and your eye is constantly making small movements. When you follow the outer rim, you will see that it is impossible.

This one is really great, try it : look just above or below the circle, keep looking forward and move your head to the left and the right. It's like the background in the circle is moving!

7 sŕdc

The birds spell the word LOVE

house in the waterfall.

This is a nice one ! The eagle is catching a fish. If look closely, you can see its entire path before the catch.

Except for Queen Elisabeth II, there is something more on this (real !) banknote. Hint : it's a word, and it's pretty large. It's hidden but pretty obious once you know it.

Turn your head to the right, you can read the word SEX in the palm trees.

You can discover a few couples kissing in the air and in the sea.

Look closely to the center of the rose and you will see a couple kissing. Also pay attention to the wooden frame around the picture. It's impossible to conctruint I

What is hidden in this picture?

The rocks look like a naked woman.

Syヨコg 9 yヨlıv

najprv prečítajte (\rightarrow), potom (\downarrow)

Interpretáciu ovplyvňuje kontext

Pri pohybe hlavy dozadu sú kružnice menšie, každý symbol sa pohybuje dovnútra a ich šikmé hrany spôsobujú pocit krúživého pohybu.

