

ERASMUS+ PROGRAMME

Erasmus+ - Key Action 2 Capacity Building in the Field of Higher Education

Project No: 585980-EPP-1-2017-1-DE-CBHE-JP

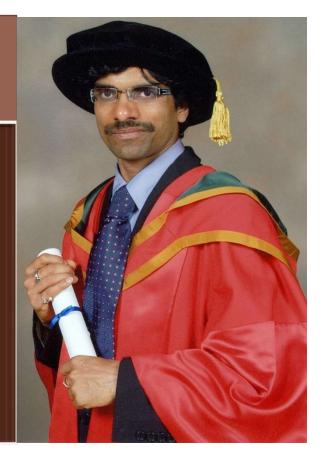
Workshop in Malta

26-28.06.2018

Venue: The ICT Lab (Level -1, Block B, Room 1). Faculty of Information and Communication Technology, ICT Building, University of Malta, Msida, Malta

6

June 26th, 2019				
8:30 - 9:00	Breakfast and Registration			
09:00 - 09:30	Welcome and Introduction	Dr Lalit Garg		
9:30 - 10:30	Health Informatics	Dr Lalit Garg		
10:30 - 11:00	Refreshment			
11:30 - 12:30	Health Systems Management, and Leadership	Prof. Sandra Buttigieg		
12:30 - 13:30	Lunch			
13:30 - 14:30	Dental curriculum Review and Update			
14:30 - 15:00	Refreshment			
15:00 - 16:00	Dental curriculum Review and Update			


June 27th, 2019				
8:30 - 9:00	Breakfast and Registration			
09:00 - 10:30	Advances in Medical Education	Prof. Isabel Stabile		
10:30 - 11:00	Refreshment			
11:30 - 12:30	Advances in Medical Education	Prof. Isabel Stabile		
12:30 - 13:30	Lunch			
13:30 - 14:30	Visit to the Mater Dei Hospital			
14:30 – 15:00	Refreshment			
15:00 - 16:00	Visit to the Mater Dei Hospital			

8:30 – 9:00	Breakfast and Registration			
09:00 - 10:30	Management Committee Meeting			
10:30 - 11:00	Refreshment			
11:30 - 12:30	Management Committee Meeting			
12:30 - 13:30	Lunch			
13:30 - 14:30	Management Committee Meeting			
14:30 - 15:00	Refreshment			
15:00 – 16:00	Visit to the Simulation Lab			
June 29th, 2019				
09:00 – 12:30	Visit to Valletta and Mdina			

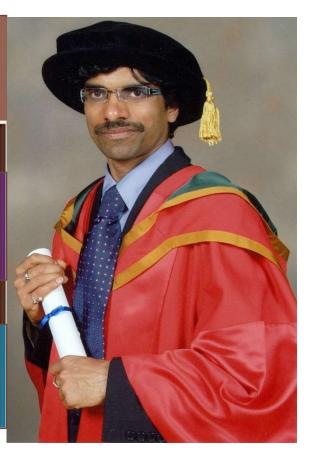
PS: We will provide the refreshment and the Lunch (Halal or vegetarian). If you have any questions, you can always call Dr Lalit Garg at +356-79233327, Mr Emeka Chukwu: +356-99330888 Mr Vijay Sony: +356-99705051.

PhD Computer Science University of Ulster, UK, 2010

24/06/2019

PhD Computer Science University of Ulster, UK, 2010

Postgraduate: Information Technology, ABV-IIITM, Gwalior, India, 2001

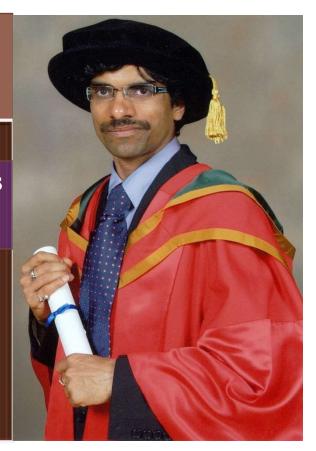

24/06/2019

PhD Computer Science University of Ulster, UK, 2010

Postgraduate: Information Technology, ABV-IIITM, Gwalior, India, 2001

Bachelor: Electronics & Communication Engineering, Barkatullah University, India, 1999

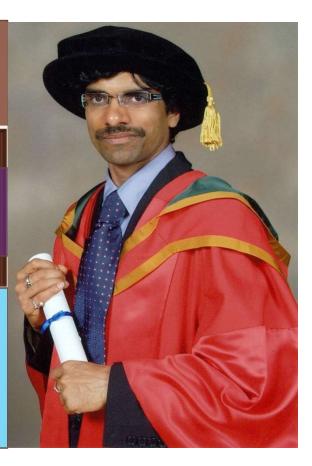
24/06/2019



24/06/2019

Supervision experience

More than 200 successful masters dissertations (University of Liverpool, UK)


24/06/2019

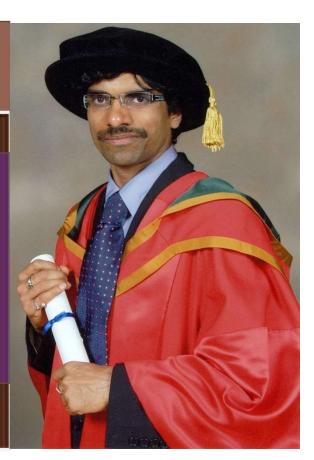
Supervision experience

More than 200 successful masters dissertations (University of Liverpool, UK)

Many of these were sponsored by industrial organizations.

24/06/2019

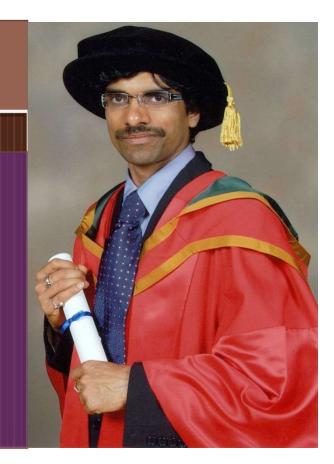
More than 18 years of teaching and research experience



24/06/2019

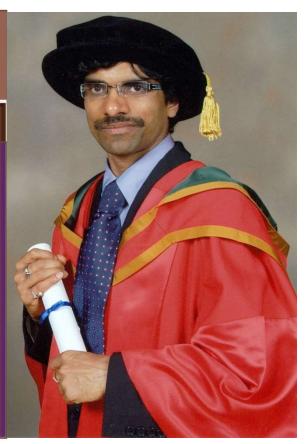
More than 18 years of teaching and research experience

Thapar University, India University of Liverpool, UK University of Malta, Malta Nanyang Technological University, Singapore University of Ulster, UK



24/06/2019

Publication record


- 32 papers in refereed journals,
- 52 papers in refereed conferences,
- 10 refereed book chapters,
- 18 other (extended) abstracts,
- 1 contributed book and 1 edited book.

Publication record

- Google Scholar: H-Index: 12 (total 557 citations and 77 indexed publications)
- Scopus: H-Index: 9 (total 297 citations and 50 indexed publications),
- The Web of knowledge: H-Index: 8 (total 187 citations and 38 indexed publications)

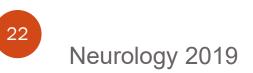
Visit me at

http://lalitgarg.info/

Publication Record, Research Interests, Projects and

24/06/2019

Visit me at


http://lalitgarg.info/

Research Interests, Projects and

• • • • • •

Other information

24/06/2019

Health data Analytics: Making Sense of Health Data to improve health services

Lalit Garg,

Senior Lecturer, University of Malta, Malta

Honorary Lecturer, University of Liverpool, UK

e-mail: lalit.garg@um.edu.mt

web: http://lalitgarg.info/

Phone: +356-2340-2112

Roadmap

- Introduction
 - Complex Systems
 - Some interesting problems and observations
- Background
 - Phase type distribution
 - Phase type distribution survival trees
- Applications
- **Publications** 16/10/2019

 Life expectancy has increased with improvement in health services and standard of living.

- Life expectancy has increased with improvement in health services and standard of living.
- Higher demand to the healthcare resources

- Life expectancy has increased with improvement in health services and standard of living.
- Higher demand to the healthcare resources
- Healthcare challenge is to continue providing the same quality of care

• Healthcare system facing major problems

- Healthcare system facing major problems
 - Lack of beds in hospitals

- Healthcare system facing major problems
 - Lack of beds in hospitals and
 - Lack of other hospital resources.

• To work with these problems the healthcare system needs :

- To work with these problems the healthcare system needs :
 - An efficient way to forecast the resources required

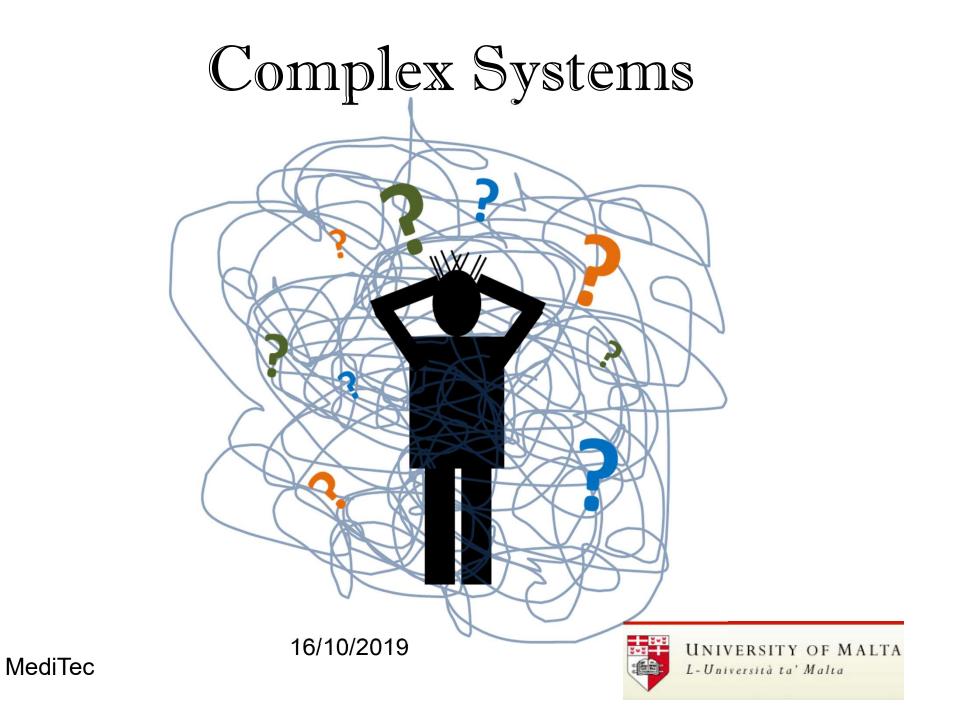
- To work with these problems the healthcare system needs :
 - An efficient way to forecast the resources required
 - To minimize the cost of care while maintaining the quality of care.

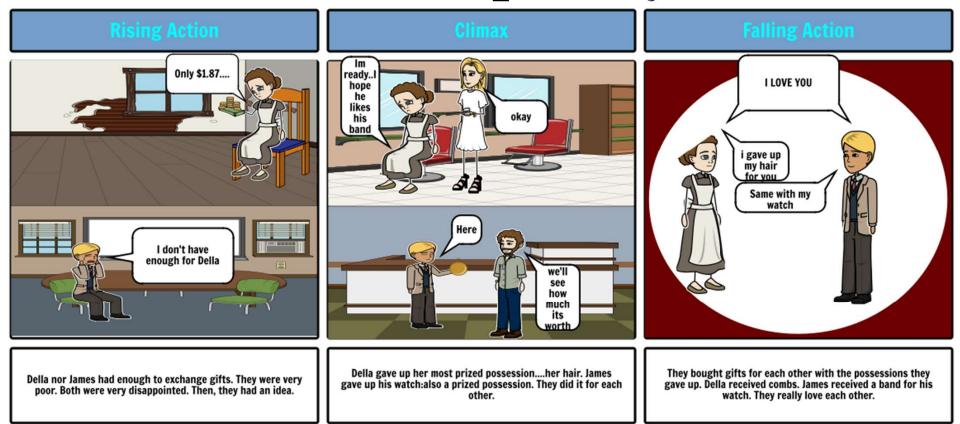
• When modelling the healthcare system it would help:

- When modelling the healthcare system it would help:
 - To better understand the process for the design of polices that can improve the quality of care

- When modelling the healthcare system it would help:
 - To better understand the process for the design of polices that can improve the quality of care
 - To ensure the optimal utilization of the available resources

Background




16/10/2019

UNIVERSITY OF MALTA L-Università ta' Malta

MediTec

Create your own at Storyboard That

https://www.storyboardthat.com/storyboards/baptist_snniper/the-gift-of-the-magi-story-elements

MediTec

16/10/2019

16/10/2019

16/10/2019

Requires

1. Human Behavioural Modelling

- 1. Human Behavioural Modelling
- 2. Modelling the effect of others' Behaviour (using game theory),

- 1. Human Behavioural Modelling
- 2. Modelling the effect of others' Behaviour (using game theory),
- 3. Modelling of cultural, social, economical, financial and environmental effects (Big data analytics),

- 1. Human Behavioural Modelling
- 2. Modelling the effect of others' Behaviour (using game theory),
- 3. Modelling of cultural, social, economical, financial and environmental effects (Big data analytics),
- 4. Most difficult: modelling spontaneous (uncorrelated) changes in sentiments,

- 1. Human Behavioural Modelling
- 2. Modelling the effect of others' Behaviour (using game theory),
- 3. Modelling of cultural, social, economical, financial and environmental effects (Big data analytics),
- 4. Most difficult: modelling spontaneous (uncorrelated) changes in sentiments,
- 5. Reality vs perception.

Reality vs Perception

With government intervention:

With government intervention: More demand than supply = More subsidy to the buyer

With government intervention: More demand than supply = More buyer subsidy More buyer subsidy = More profit

 All buyer subsidy will go to supplier/ manufacturers

With government intervention: More demand than supply = More buyer subsidy More buyer subsidy = More profit More profit = More attractive industry

All grants will ultimately go to the buyers

With government intervention:

More demand than supply = More buyer subsidy

- More buyer subsidy = More profit
- More profit = More attractive industry

= More players

With government intervention:

More demand than supply = More buyer subsidy

- More buyer subsidy = More profit
- More profit = More attractive industry
 - = More players
 - = More supply than demand

With government intervention:

More demand than supply = More buyer subsidy

More buyer subsidy = More profit

- = More players
- = More supply than demand
- = Less price = Less profit

With government intervention:

More demand than supply = More buyer subsidy

More buyer subsidy = More profit

- = More players
- = More supply than demand
- = Less price = Less profit
- = Some will leave the market with loss

With government intervention:

More demand than supply = More buyer subsidy

More buyer subsidy = More profit

- = More players
- = More supply than demand
- = Less price = Less profit
- = Some will leave the market with loss
- = More demand than supply

With government intervention:

More demand than supply = More grant to the supplier/manufacturer to ensure meeting the demand

With government intervention: More demand than supply = More supplier grant More supplier subsidy = More profit

With government intervention: More demand than supply = More supplier grant More supplier subsidy = More profit More profit = More attractive industry

With government intervention:

More demand than supply = More supplier grant

- More supplier subsidy = More profit
- More profit = More attractive industry

= More players

With government intervention:

More demand than supply = More supplier grant

- More supplier subsidy = More profit
- More profit = More attractive industry
 - = More players
 - = More supply than demand

With government intervention:

More demand than supply = More supplier grant

More supplier subsidy = More profit

- = More players
- = More supply than demand
- = Less price = Less profit

With government intervention:

More demand than supply = More supplier grant

More supplier subsidy = More profit

More profit = More attractive industry

- = More players
- = More supply than demand
- = Less price = Less profit
- = Some will leave the market with

losses

MediTec

With government intervention:

More demand than supply = More supplier grant

More supplier subsidy = More profit

- = More players
- = More supply than demand
- = Less price = Less profit
- = Some will leave the market with loss
- = More demand than supply

Without government intervention:

More demand then supply = More profit

Without government intervention: More demand then supply = More profit More profit = More attractive industry

= More players

Without government intervention:

More demand then supply = More profit

- = More players
- = More supply than demand

Without government intervention:

More demand then supply = More profit

- = More players
- = More supply than demand
- = Less price = Less profit

Without government intervention:

More demand then supply = More profit

- = More players
- = More supply than demand
- = Less price = Less profit
- = Some will leave the market with loss

Our Economy: A Complex System

Without government intervention:

More demand then supply = More profit

More profit = More attractive industry

- = More players
- = More supply than demand
- = Less price = Less profit
- = Some will leave the market with loss
- = More demand than supply

Our Economy: A Complex System

- For industries to solve the problem: One of the solution is **innovation**.
- Develop substitute products
- ✓ Make process more efficient
- ✓ Reduce production cost
- ✓ More efficient supply chain network
- ✓ Provide add-on services

Our Economy: A Complex System

For other industries to solve the problem: One of the methods is **innovation**

And duration of stay in the market

- ✓ How long an industry would be attractive
- ✓ When to leave the market/industry
- \checkmark How to increase this duration
- Alternate product development through innovation
- ✓ Plan to leave the market/industry

Our Education System

According to MHRD:

- In 2015, there were more than 6000 engineering and technology institutes.
- Produced more than 2.9 million engineering graduates.
- Only 1.5 million got jobs in their engineering discipline.
- ????

Our Education System

• The decision to pursue BE/BTech in their chosen discipline was taken 4 years back based on then current data.

Should we reduce the food wastage or not?

Food wastage

- Should we reduce the food wastage or not?
- Assume there is 35% food wastage
- Means we are producing 135% food than required.
- Are food producers (farmers) getting too much profit?
- Are food product prices are inflated?

Food wastage

- Should we reduce the food wastage or not?
- What if we reduce the food wastage by 50%?
- Then the demand will be 118% and supply will be 135%?
- What will be the food prices?
- What will happen with our farmers?

UNIVERSITY OF MALTA L-Università ta' Malta

Private healthcare:

• Some patients want cheap healthcare

- Some patients want cheap healthcare
- Some patients want best (luxurious) healthcare

- Some patients want cheap healthcare
- Some patients want best (luxurious) healthcare
- Health providers want maximum profit

- Some patients want cheap healthcare
- Some patients want best (luxurious) healthcare
- Health providers want maximum profit
- maximum profit = maximum hospital visits

- Some patients want cheap healthcare
- Some patients want best (luxurious) healthcare
- Health providers want maximum profit
- maximum profit = maximum hospital visits
- = maximum readmissions
- + maximum hospital duration of stay

UNIVERSITY OF MALTA L-Università ta' Malta

MediTec

Public healthcare:

• Everyone gets the same healthcare

- Everyone gets the same healthcare
- Health providers want minimum cost

- Everyone gets the same healthcare
- Health providers want minimum cost
- Minimum cost
 - = Limited resources
 - = least duration in hospitals + minimum admissions

- Everyone gets the same healthcare
- Health providers want minimum cost
- Minimum cost
 - = Limited resources
 - = least duration in hospitals + waiting list

- Everyone gets the same healthcare
- Health providers want minimum cost
- Minimum cost
 - = Limited resources
 - = more readmissions + waiting list

- Everyone gets the same healthcare
- Health providers want minimum cost
- Minimum cost
 - = Limited resources
 - = more readmissions + waiting list
 - = longer waiting list

https://fineartamerica.com/featured/hospital-waiting-room-mark-thomasscience-photo-library.html

UNIVERSITY OF MALTA L-Università ta' Malta

- Everyone gets the same healthcare
- Health providers want minimum cost
- Minimum cost
 - = Limited resources
 - = longer waiting list
 - = Poor healthcare

- Everyone gets the same healthcare
- Health providers want minimum cost
- Minimum cost
 - = Limited resources
 - = longer waiting list
 - = Poor healthcare
 - = Public outcry
 - = Preference

- Everyone gets the same healthcare
- Health providers want minimum cost
- Minimum cost
 - = Limited resources
 - = longer waiting list
 - = Poor healthcare
 - = Public outcry
 - = Preference

- Corruption
- Health providers want minimum cost
- Minimum cost
 - = Limited resources
 - = longer waiting list
 - = Poor healthcare
 - = Public outcry
 - = Preference

Public healthcare:

• More resources

Public healthcare:

• More resources = More cost

Public healthcare:

• More resources = short waiting lists

- More resources = short waiting lists
- Short waiting list = longer hospital stay

- More resources = short waiting lists
- Short waiting list = longer hospital stay minimum readmissions

Public healthcare:

- More resources = short waiting lists
- Short waiting list = longer hospital stay minimum readmissions

more patients

- Even more resources = no waiting lists
- Short waiting list = longer hospital stay minimum readmissions more patients underutilization

- Even more resources = no waiting lists
- Short waiting list = longer hospital stay minimum readmissions
 more patients underutilization misuse

- Even more resources = no waiting lists
- Short waiting list = longer hospital stay minimum readmissions
 - more patients
 - underutilization
 - misuse
 - more cost

Public healthcare:

- Even more resources = no waiting lists
- Short waiting list = longer hospital stay

minimum readmissions

more patients

underutilization

misuse

more cost

Some waiting lists

Public healthcare:

• Optimum resources = optimum waiting time

- Optimum resources = optimum waiting time
- = Optimum hospital stay

- Optimum resources = optimum waiting time
 - = Optimum hospital stay
 - = minimum readmissions

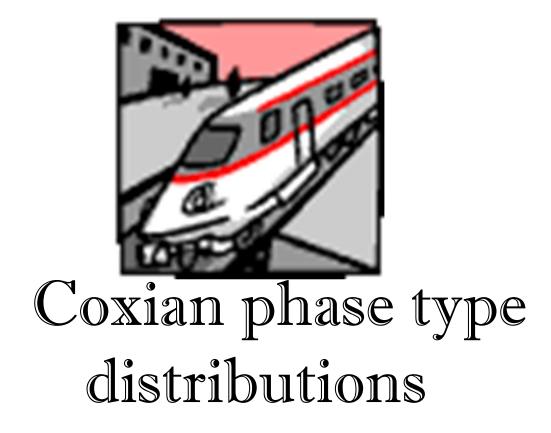
- Optimum resources = optimum waiting time
 - = Optimum hospital stay
 - = minimum readmissions
 - = optimum patients' number

- Optimum resources = optimum waiting time
 - = Optimum hospital stay
 - = minimum readmissions
 - = optimum patients' number
 optimum utilization

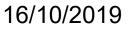
- Optimum resources = optimum waiting time
 - = Optimum hospital stay
 - = minimum readmissions
 - optimum patients' number
 optimum utilization
 minimum misuse

- Optimum resources = optimum waiting time
 - = Optimum hospital stay
 - = minimum readmissions
 - optimum patients' number
 optimum utilization
 minimum misuse
 optimum cost

- Optimum resources = optimum waiting time
 - = Optimum hospital stay
 - = minimum readmissions
 - optimum patients' number
 optimum utilization
 minimum misuse
 - optimum cost
 - Some waiting lists



- Optimum resources = Proper planning
 - = Continuously adding resources (if population is increasing/changing)
 - = Resource requirement forecasting



- Optimum resources = Proper planning
 - = Continuously adding resources (if population is increasing/changing)
 - = Resource requirement forecasting
 - = Admission rate estimation
 - = Length of stay estimation

UNIVERSITY OF MALTA L-Università ta' Malta

Among popular choices to fit spell length of stay data.

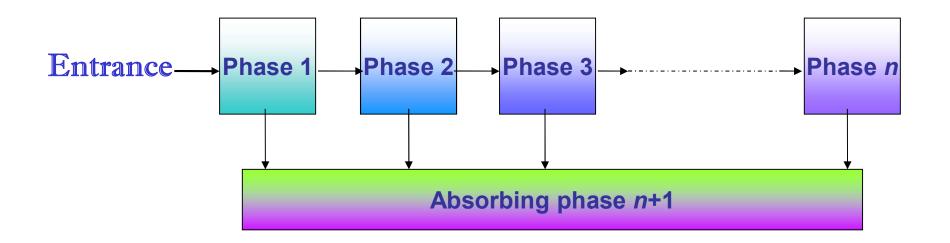
Among popular choices to fit spell length of stay data.

Provide a simple interpretation of fit for the length of stay data.

Among popular choices to fit spell length of stay data.

Provide a simple interpretation of fit for the length of stay data.

Parameter estimation is easier than other phase type distributions.


MediTec

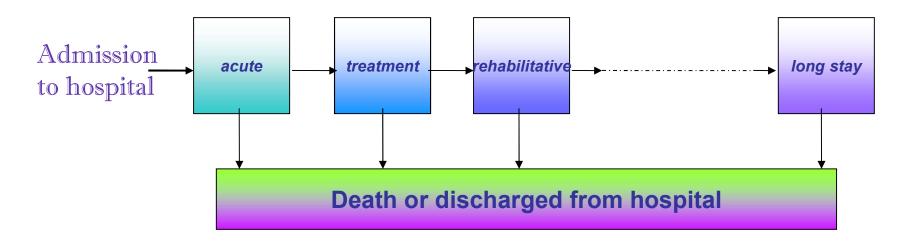
16/10/2019

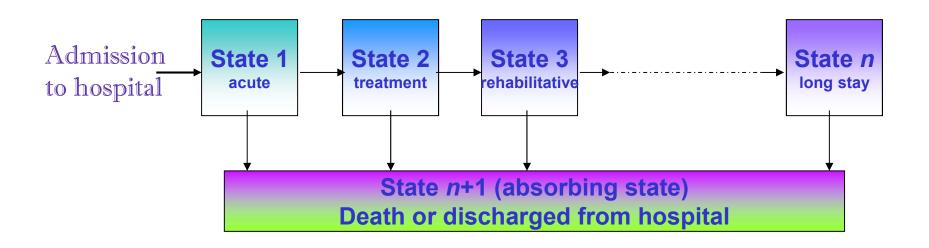
A Markov chain

16/10/2019

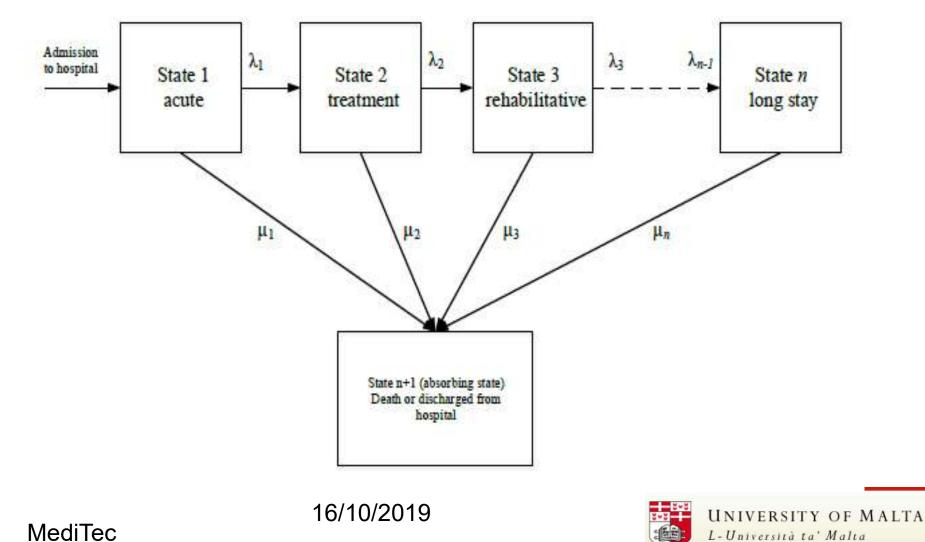
A Markov chain

16/10/2019


UNIVERSITY OF MALTA L-Università ta' Malta


Hospital care system as a Markov chain

Patient flow in the stroke care system can be modelled as an *n* state Markov process with Coxian phase type distributions



UNIVERSITY OF MALTA

L-Università ta' Malta

A process can start only in the first state (state 1).

Sequential transition rate is λ_k .

Also transition rate from any state k to the absorbing state n+1 is μ_k .

Coxian phase type distributions The PDF for the duration before absorption: f(t)=pexp(Qt)q

where the initial state probability distribution $\mathbf{p} = (1 \ 0 \ 0 \ \dots 0 \ 0)$

absorption probabilities

$$\mathbf{q} = \begin{pmatrix} \mu_1 & \mu_2 & \dots & \mu_{n-2} & \mu_n \end{pmatrix}^{\mathrm{T}}$$

16/10/2019

MediTec

And the transition matrix

$$\mathbf{Q} = \begin{pmatrix} -(\lambda_1 + \mu_1) & \lambda_1 & 0 & \cdots & 0 & 0 \\ 0 & -(\lambda_2 + \mu_2) & \lambda_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 & -(\lambda_{n-1} + \mu_{n-1}) \lambda_{n-1} \\ 0 & 0 & 0 & \cdots & 0 & -\mu_n \end{pmatrix}$$

Coxian phase type distributions The likelihood function:

$$l = \prod_{i=1}^{N} \left(\mathbf{p} \exp\left\{\mathbf{Q}t_{i}\right\} \mathbf{q} \right)$$

where *N* is the total number of patients in the care system.

16/10/2019

The loglikelihood function $L = \sum_{i=1}^{N} \left(\log \left(\mathbf{p} \exp \left\{ \mathbf{Q} t_i \right\} \mathbf{q} \right) \right).$ Or $L = \sum_{i=1}^{N} f(t_i)$

where $f(t_i) = \log(\mathbf{p} \exp{\{\mathbf{Q}t_i\}}\mathbf{q})$

16/10/2019

UNIVERSITY OF MALTA L-Università ta' Malta

MediTec

Weighted-Average Information Criterion WIC (Weighted-Average Information Criterion) is a weighted average of the Bayesian information criterion and the Akaike information criterion with a small sample size correction.

Weighted-Average Information Criterion WIC (Weighted-Average Information Criterion) is a weighted average of the Bayesian information criterion and the Akaike information criterion with a small sample size correction.

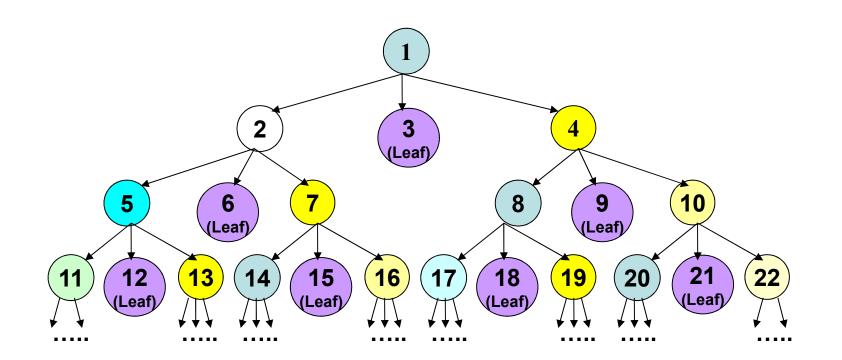
The splitting criteria based on the WIC combines the strengths of both the AIC and the BIC it works well with small and large sample sizes and in the situation where sample size is not known.

Weighted-Average Information Criterion The performance of WIC was compared with several other popular criteria in the study and the results showed that WIC is very reliable.

$$WIC = -2L + d + \frac{d(((\log(N) - 1) \log(N))(N - (d - 1))^{2} + 2N(N + (d + 1)))}{(2N + (\log(N)(N - (d + 1)))(N - (d + 1)))}$$

Survival tree

16/10/2019



Survival tree

Survival trees

• Decision trees in survival analysis

Survival trees

- Decision trees in survival analysis
- A type of classification and regression trees

Survival trees

- Decision trees in survival analysis
- A type of classification and regression trees
- Constructed by recursively partitioning the given dataset in to subsets based on some splitting and selection criteria.

Phase type survival tree

16/10/2019

UNIVERSITY OF MALTA L-Università ta' Malta

Phase type survival trees

• A powerful non-parametric method of clustering survival data for prognostication

Phase type survival trees

- A powerful non-parametric method of clustering survival data for prognostication
 - To determine importance and effect of various covariates (such as patient's characteristics)

Phase type survival trees

- A powerful non-parametric method of clustering survival data for prognostication
 - To determine importance and effect of various covariates (such as patient's characteristics)
 - Their interrelation on patient's survival, treatment outcome, disease risk, disease progress or hospital length of stay

Phase type survival tree

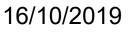
• Each node of *the survival tree* is separately modeled by *phase type distributions*

Phase type survival tree

- Each node of *the survival tree* is separately modeled by *phase type distributions*
- It combines the merits of both phase type distributions and survival trees.

Phase type survival tree

- Each node of *the survival tree* is separately modeled by *phase type distributions*
- It combines the merits of both phase type distributions and survival trees.
- Reduces the dimensionality of data and explains the variations in the data.


Tree construction

Two steps

Growing: splitting a node into child nodes

Tree construction

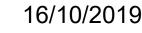
Two steps

Growing: splitting a node into child nodes

Selection: determining if a node is terminal node. If it is not then selecting the best possible partition by exploring all possible splits.

Growing: by recursively partitioning into sub groups by the covariates based on some splitting criteria.

At each node apply one covariate at a time and repeat this with other covariates.



Tree growing

Splitting criteria: maximizing either within node homogeneity or between node separation.

We used splitting criteria to maximize within node homogeneity based on improvement of WIC functions

Tree growing

A covariate *a* can have any of the *l* values such that

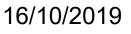
$$N = N_{a1} + N_{a2} + \ldots + N_{al} = \sum_{i=1}^{l} N_{ai} .$$

The loglikelihood of node a is

$$L = \sum_{j=1}^{l} \sum_{i=1}^{N_{aj}} f(t_{iaj}) = \sum_{i=1}^{N_{a1}} f(t_{ia1}) + \sum_{i=1}^{N_{a2}} f(t_{ia2}) + \dots + \sum_{i=1}^{N_{al}} f(t_{ial})$$

Or $L = L_{a1} + L_{a2} + \dots + L_{al} = \sum_{i=1}^{l} L_{ai}$.

16/10/2019


MediTec

Tree growing

Similarly, WIC of node a is

$$WIC = WIC_{a1} + WIC_{a2} + \ldots + WIC_{al} = \sum_{i=1}^{l} WIC_{ai}$$
.

Node selection

For each possible split of a node, record the total WIC after the split.

The split which maximizes the total WIC of sub-groups is determined as follows:

$$WIC_{max} = max(WIC_a, WIC_b, \dots, WIC_l)$$

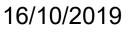
Node selection

If WIC_{max} is greater than WIC of the node before the split, select the split with WIC equal to WIC_{max} else record the node as a terminal node.

Node selection

- If WIC_{max} is greater than WIC of the node before the split, select the split with WIC equal to WIC_{max} else record the node as a terminal node.
- **Terminal node:** A terminal node is the node at which within node homogeneity cannot significantly be improved by any possible split.

To evaluate the model we used the discharge dataset from the Emergency department at the Mater Dei Hospital Malta of all patients discharged in 2011-2014.


We used covariates that represent the patient characteristics:

Age

Gender

District

Source of Admissions

For the length of stay :

The continuous covariate was the patient's age

Three categorical covariates Gender, District and Source of Admission.

Categorical covariate data was divide in three groups.

The cut points of the age are:

1 to 40,

41 to 70 and

71 and over.

Patients with 0 age at admission were omitted from the data. MediTec 16/10/2019

The gender covariate has two different values that are Female and Male.

The gender covariate has two different values that are Female and Male.

The district covariate has six different values that are the geographical districts of Malta.

The gender covariate has two different values that are Female and Male.

- The district covariate has six different values that are the geographical districts of Malta.
- Source of admission is from where the patient was admitted and has five different covariates.

The gender covariate has two different values that are Female and Male.

- The district covariate has six different values that are the geographical districts of Malta.
- Source of admission is from where the patient was admitted and has five different covariates.
- Each cluster was given a group number for running the Coxian Phase fittings.

For the admissions:

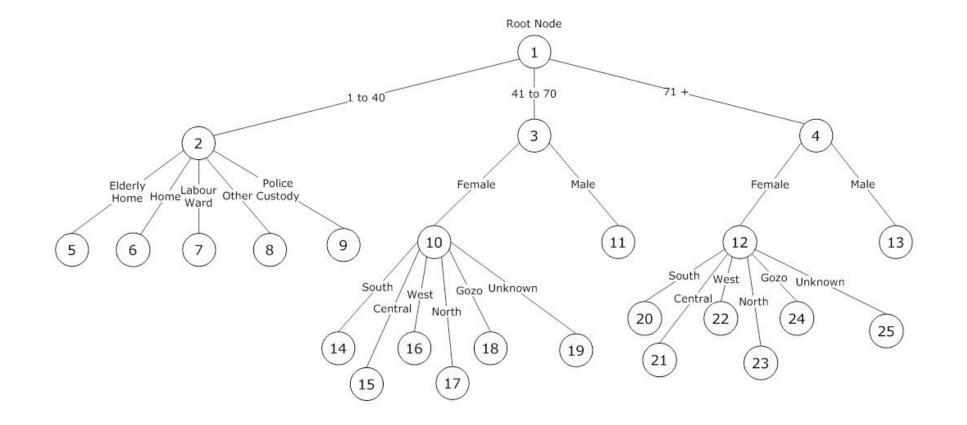
The categorical covariate was the district of the patient and

For the admissions:

- The categorical covariate was the district of the patient and
- The categorical covariates are the age and the gender.

For the admissions:

- The categorical covariate was the district of the patient and
- The categorical covariates are the age and the gender.
- Each value in the covariate is given a group number to run the Coxian phase fittings for each group.


Node	Covariate	Covariate Value	Total Number of Patients	WIC	Mean LOS	Number of phases	Total WIC	Gain in WIC	
Level 1									
	All	Root Node	64439	351604.66	6.8411	6	351604.66	-	
		1 to 40	20631	87222.35	4.1304	6			
	Age	41 to 70	22600	122877.8	6.7443	5	341295.6	10309.1	
		71 +	21208	131195.4	9.5813	5			
		South	22237	121077.72	6.756	5	351775.15	-170.49	
		Central	19480	107177.13	6.9864	4			
	District	West	8423	46460.1	7.0515	5			
		North	13542	72716.7	6.6032	4			
1		Gozo	539	3227.25	8.3358	5			
Root		Unknown	218	1116.25	5.5	4			
Node		Elderly Home	1925	11775.05	9.4732	6			
		Home	61356	332501.72	6.7339	6			
		Labour Ward	2	32.84	4.5	6		526.2	
	Source	Other (Gov Hospital, Private, Mental and Abroad)	1060	6297.08	8.4632	6	351078.46	526.2	
		Police Custody	96	471.77	4.7604	2			
	Condon	Female	32886	179393.48	6.8672	6	251627 51	22.05	
	Gender	Male	31553	172244.02	6.814	5	351637.51	-32.85	
							- o miter situ eu m		

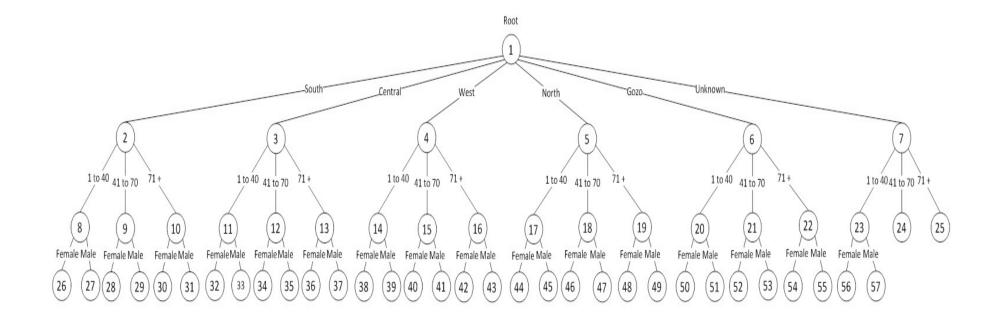
Node	Covariate	Covariate Value	Total Number of Patients	WIC	Mean LOS	Number of phases	Total WIC	Gain in WIC
			Level 3					
	All	Age 41 to 70, Female	9088	49410.24	6.817	4	49410.24	-
		41 to 70, South, F	3164	17051	6.8587	6		
		41 to 70, Central, F	2782	15094.21	6.8724	5		
	District	41 to 70, West, F	1123	6118.53	6.9154	5	49148.34	261.9
	District	41 to 70, North, F	1933	10357.31	6.5525	3	49146.34	201.9
		41 to 70, Gozo, F	55	366.03	9.9454	1		
10 (Age		41 to 70, Unknown, F	31	161.25	4.9678	3		
41 to 70,	Source of Admission	41 to 70, Elderly Home, F	81	561.03	12.4445	3		
Female)		41 to 70, Home, F	8835	47791.27	6.7268	4		
1 •11101 •)		41 to 70, Labour Ward, F	1	3.89	7	1	40206 46	12 70
		41 to 70, Other (Gov Hospital, Private, Mental and Abroad), F	170	1038.88	8.8529 4		49396.46	13.78
		41 to 70, Police Custody, F	1	1.39	2	1		

Node	Covariate	Covariate Value	Total Number of Patients	WIC	Mean LOS	Number of phases	Total WIC	Gain in WIC	
			Level 3						
	All	Age 71 +, Female	11578	72543.24	9.9719	5	72543.24	-	
		71 +, South, F	3663	22859.81	9.8444	6			
	District	71 +, Central, F	3880	24104.55	9.8023	6			
		71 +, West, F	1736	11040.79	10.4919	4	72219.66	323.58	
12 (1		71 +, North, F	2242	13837.2	10.0589	6	12219.00	525.50	
12 (Age			71 +, Gozo, F	40	287.23	12.825	1		
71 +,		71 +, Unknown, F	17	90.08	4.8235	1			
Female)		71 +, Elderly Home, F	1257	7655.41	9.4121	4			
	Source of	71 +, Home, F	10093	63415.04	10.0396	6			
	Admission	71 +, Other (Gov Hospital, Private, Mental and Abroad), F	228	1462.44	10.057	4	72532.89	10.35	

Node	Covariate	Covariate Value	Total Admissio ns	WIC	Mean	Number of Phases	Average WIC	Total WIC	Gain in WIC	
Level 1										
	All	Root Node	32277	3171.43	89.43	22	3171.43	3171.43	-	
		1 to 40	10386	2561.57	29.45	10	853.86			
	Age	41 to 70	11244	2590.39	31.81	10	863.46	2576.47	594.96	
		71 +	10647	2577.45	30.17	10	859.15			
	Gender	Female	16510	2793.52	44.2	10	1396.76	2811.39	360.04	
1 (Root	Gender	Male	15767	2829.26	46.23	10	1414.63			
Node)		South	11211	2581.18	31.72	10	430.2			
		Central	9690	2491.79	27.55	10	415.3			
	District	West	4270	2051.09	12.7	10	341.85	175(20	1415 04	
	District	North	6774	2289.19	19.56	10	381.53	1756.39	1415.04	
		Gozo	289	895.58	1.79	6	149.26			
		Unknown	43	229.51	1.12	10	38.25			
							5-5 UN	IVEDSITY	OF MALTA	

MediTec

16/10/2019


UNIVERSITY OF MALTA L-Università ta' Malta

Node	Covariat e	Covariat e Value	Total Admissio ns	WIC	Mean	Number of Phases	Average WIC	Total WIC	Gain in WIC
8 (South,	Condor	Female	2263	1817.71	7.2	5	50.49	94.97	17.71
1 to 40)	Gender	Male	1518	1601.38	5.16	5	44.48	94.97	1/./1
9 (South,	Gender	Female	1602	1617.75	5.39	5	44.94	94.31	10 11
41 to 70)	Genuer	Male	2413	1777.52	7.61	7	49.38	74.31	18.11
10 (South,	Gender	Female	1804	1680.7	5.94	5	46.69	91.78	17.34
71 +)	Genuer	Male	1611	1623.45	5.41	5	45.1	71.70	17.34
11		Female	1761	1719.87	5.82	5	47.77		
(Central, 1 to 40)	Gender	Male	1191	1496.32	4.26	5	41.56	89.34	16.18
12		Female	1325	1565.73	4.63	5	43.49		
(Central, 41 to 70)	Gender	Male	1942	1716.2	6.32	6	47.67	91.16	17.21
13		Female	1934	1725.28	6.3	5	47.92		
(Central, 71 +)	Gender	Male	1537	1599.83	5.21	5	44.44	92.36	18.68
14 (West,	Condon	Female	820	1357.36	3.25	4	37.7	(0.44	10.40
1 to 40)	Gender	Male	506	1142.3	2.39	4	31.73	69.44	18.49
15 (West,	Condor	Female	565	1200.36	2.55	4	33.34	70.41	16.41
41 to 70)	Gender	Male	840	1334.26	3.3	4	37.06		
IVIÉd	iTec		16/1	0/2019			L-	Università ta	' Malta

Node	Covariat e	Covariat e Value	Total Admissio ns	WIC	Mean	Number of Phases	Average WIC	Total WIC	Gain in WIC	
Level 3										
16 (West,	Gender	Female	908	1387.43	3.49	4	38.54	71.05	18.17	
71 +)	Gender	Male	631	1202.62	2.73	4	33.41	71.95	10.1/	
17 (North,	Gender	Female	1304	1563.15	4.57	4	43.42	81.14	15.96	
1 to 40)	Genuer	Male	882	1357.83	3.42	4	37.72	81.14	15.86	
18 (North,	Gender	Female	959	1411.44	3.63	4	39.21	84.06	17.54	
41 to 70)		Male	1469	1614.66	5.02	5	44.85			
19 (North,	Gender	Female	1125	1488.1	4.08	4	41.34	81.41	17.05	
71 +)		Male	1035	1442.69	3.84	4	40.07			
20 (Gozo,	Carlas	Female	64	323.82	1.18	10	8.99	16.17	12.16	
1 to 40)	Gender	Male	50	258.44	1.14	10	7.18			
21 (Gozo,	Gender	Female	64	323.82	1.18	10	8.99	20.15	0.06	
41 to 70)	Genuer	Male	82	401.76	1.23	10	11.16	20.15	9.06	
22 (Gozo,	Condor	Female	24	100.2	1.07	10	2.78	7 77	0.26	
71 +)	Gender	Male	35	161.34	1.1	10	4.48	7.27	9.26	
23		Female	13	22.86	1.04	10	0.64			
(Unknow n, 1 to 40)	Gender	Male	14	45.21	1.04	10	1.26	1.89	5.29	

MediTec

MediTec

Phase-Type Survival Tree Construction

 The Length of Stay phase-type survival tree has 19 leaf nodes and has a total Gain in WIC of 12619.16.

Phase-Type Survival Tree Construction

- The Length of Stay phase-type survival tree has 19 leaf nodes and has a total Gain in WIC of 12619.16.
- The Admissions phase-type survival tree has 34 leaf nodes and a total Gain in WIC of 2111.41.

Prognostication

- Both phase-type survival trees are showing
 - Analysis of the determined patient groups from our dataset.

Prognostication

- Predictions can be made from the data used to construct the Phase-type survival tree
 - For the number of admissions by the patient grouping and

Prognostication

- Predictions can be made from the data used to construct the Phase-type survival tree
 - For the number of admissions by the patient grouping and
 - We can predict the LOS of a patient by his/her characteristics.

LOS-Prediction

Gender	Age	District	Source	Admission Date	Discharge Date	Actual LOS	Predicted LOS
М	1	South	Home	15/12/2012	19/12/2012	5	4.122102
М	67	Central	Home	21/12/2012	31/12/2012	11	6.744455
F	86	South	Home	18/12/2012	24/12/2012	7	9.960199
F	24	West	Home	22/12/2012	24/12/2012	3	4.122102
М	64	South	Home	15/12/2012	18/12/2012	4	6.744455
М	77	West	Elderly Home	26/12/2012	31/12/2012	6	9.189538
М	16	North	Home	20/12/2012	20/12/2012	1	4.122102
F	94	South	Home	18/12/2012	20/12/2012	3	9.960199
М	57	Central	Home	15/12/2012	19/12/2012	5	6.744455
F	49	Central	Home	20/12/2012	21/12/2012	2	6.916771

Admission Predictions

Admissions Date	Group	Actual Admissions	Predicted Admissions
31/12/2011	41 to 70 Unknown	0	0.04
28/12/2011	1 to 40, South, Male	3	4.15
24/12/2011	1 to 40, Central Males	2	3.28
28/12/2011	1 to 40, West, Males	1	1.39
26/12/2011	1 to 40, North, Males	1	2.45
27/12/2011	1 to 40, Gozo, Males	0	0.14
27/12/2011	1 to 40, Unknown, Males	0	0.04
19/12/2011	1 to 40, South, Females	7	6.30
29/12/2011	1 to 40, Central, Females	3	4.87
30/12/2011	1 to 40, West, Females	2	2.28
28/12/2011	1 to 40, North, Females	5	3.59
24/12/2011	1 to 40, Gozo, Females	0	0.18
24/12/2011	1 to 40, Unknown, Females	0	0.03
28/12/2011	41 to 70, South, Males	12	6.54
19/12/2011	41 to 70, Central, Males	7	5.30
26/12/2011	41 to 70, West, Males	5	2.27
15/12/2011	41 to 70, North, Males	6	2.61

Admission Predictions

Admissions Date	Group	Actual Admissions	Predicted Admissions
29/12/2011	41 to 70, Gozo, Males	0	0.22
23/12/2011	41 to 70, South, Females	7	4.39
29/12/2011	41 to 70, Central, Females	3	3.63
20/12/2011	41 to 70, West, Females	0	1.59
25/12/2011	41 to 70, North, Females	4	4.02
28/12/2011	41 to 70, Gozo, Females	0	0.18
24/12/2011	71 +, South, Males	8	4.41
30/12/2011	71 +, Central, Males	4	4.16
31/12/2011	71 +, West, Males	1	1.71
17/12/2011	71 +, North, Males	3	2.80
26/12/2011	71 +, Gozo, Males	1	0.10
17/12/2011	71 +, South, Females	4	4.87
16/12/2011	71 +, Central, Females	6	5.15
30/12/2011	71 +, West, Females	3	2.47
16/12/2011	71 +, North, Females	3	3.06
31/12/2011	71 +, Gozo, Females	0	0.07

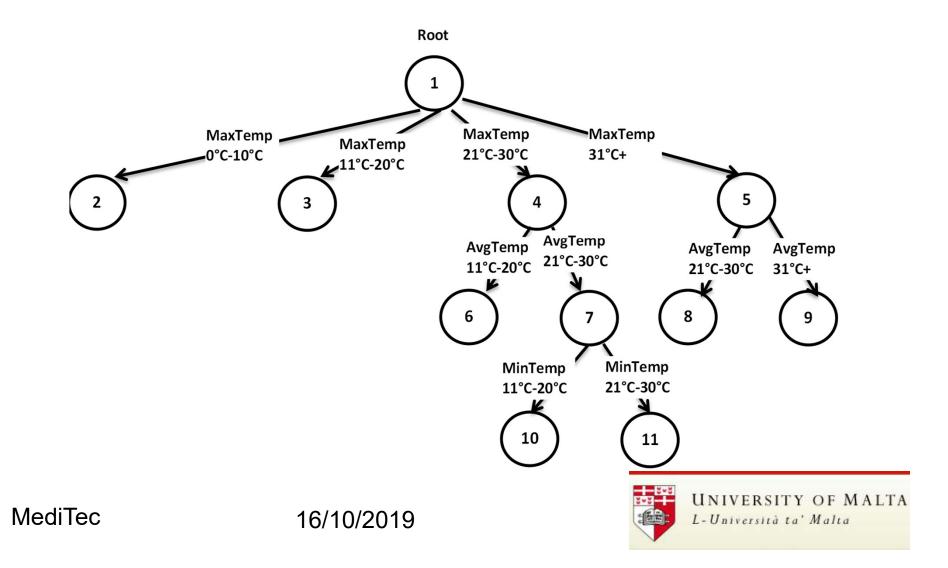
Level	Covariate	Covariate Group	No. of Patients	Mean LOS	WIC	Total WIC	WIC Gain
	All	Root	66166	6.88	361646.80	361646.80	
	MinTemp	0°C-10°C (1)	16465	7.19	91916.01	8	
	•	11°C-20°C (2)	33516	6.76	181607.62	361631.50	15.30
		21°C-30°C (3)	16185	6.83	88107.87		
	MaxTemp	$0^{\circ}\text{C-}10^{\circ}\text{C}(1)$	303	8.13	1786.56	, ,;;	11867.67
	0.5	11°C-20°C (2)	28333	6.95	143924.01	940770 14	
		21°C-30°C (3)	25205	6.83	137012.30	349779.14	
ot)		$31 + ^{\circ}C$ (4)	12325	6.82	67056.27		
(Root)	AvgTemp	0°C-10°C (1)	4834	7.23	26828.01	8	265.63
1 (11°C-20°C (2)	34493	6.87	188586.75	001001 17	
		21°C-30°C (3)	26090	6.83	141956.96	361381.17	
		$31 + ^{\circ}C(4)$	749	6.88	4009.44		
	MaxVar	x<-2°C (1)	4032	7.02	22086.49	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		$-2^{\circ}C \leq x \leq -1^{\circ}C$ (2)	18199	6.78	99118.57		
		$0^{\circ}C(3)$	19042	6.79	103741.30	361419.43	227.37
		$1^{\circ}C \leq x \leq 2^{\circ}C$ (4)	21365	7.02	117284.96		
J		$x > 2^{\circ}C$ (5)	3528	6.88	19188.12		

16/10/2019

Level	Covariate	Covariate Group	No. of Patients	Mean LOS	WIC	Total WIC	WIC Gain
	All	$0^{\circ}C$ -1 $0^{\circ}C(1)$	303	8.13	1786.56	1786.56	
	MinTemp	0°C-10°C (1)	303	8.13	1786.56	3	
		11°C-20 (2)	0	0.00	0.00	1786.56	0.00
(21°C-30°C (3)	0	0.00	0.00		
Aax	AvgTemp	0°C-10°C (1)	303	8.13	1786.56	ř *	
0		11°C-20°C (2)	0	0.00	0.00	1000 80	0.00
0.0		21°C-30°C (3)	0	0.00	0.00	1786.56	0.00
2 (0°C-10°C Max)		$31 + ^{\circ}C(4)$	0	0.00	0.00		
°0)	MaxVar	x<-2°C (1)	104	9.50	619.01	8	6
5		$-2^{\circ}C \leq x \leq -1^{\circ}C$ (2)	97	7.59	584.81		
		0°C (3)	102	7.25	605.99	1809.80	-23.24
		$1^{\circ}C \leq x \leq 2^{\circ}C$ (4)	0	0.00	0.00		
		$x > 2^{\circ}C(5)$	0	0.00	0.00		

Level	Covariate	Covariate Group	No. of Patients	Mean LOS	WIC	Total WIC	WIC Gain
3	All	$11^{\circ}C-20^{\circ}C(2)$	28333	6.83	143924.01	143924.01	4
	MinTemp	0°C-10°C (1)	15983	7.19	88145.39		
		11°C-20°C (2)	12350	6.63	66639.23	154784.63	-10860.62
		21°C-30°C (3)	0	0.00	0.00		
	AvgTemp	0°C°C-10°C (1)	4531	7.17	25082.63	<u>.</u>	
0	0660 111 06664	11°C-20°C (2)	23802	6.90	130527.73	125010.00	11000.0
Max)		21°C-30°C (3)	0	0.00	0.00	155610.36	-11686.34
C		$31 + ^{\circ}C(4)$	0	0.00	0.00		
20°	MaxVar	x<-2°C (1)	1818	6.98	10045.36	2	3
C		$-2^{\circ}C \leq x \leq -1^{\circ}C$ (2)	8495	6.78	45964.04		
(11°C-20°C	2	0°C (3)	8287	6.72	44646.01	154715.89	-10791.88
5	1 S	$1^{\circ}C \le x \le 2^{\circ}C$ (4)	8551	7.23	47346.72	1	P
		$x > 2^{\circ}C(5)$	1182	7.59	6713.75		

Level	Covariate	Covariate Group	No. of Patients	Mean LOS	WIC	Total WIC	WIC Gain
	All	21° C-30° C (3)	25205	6.83	137012.30	137012.30	
	MinTemp	0°C-10°C (1)	179	6.13	967.79	_	
	Ter.	11°C-20°C (2)	20347	6.83	110539.41	136794.76	217.54
		21°C-30°C (3)	4679	6.84	25287.56		
ax)	AvgTemp	0°C-10°C (1)	0	0.00	0.00	12 Q.	746.88
Ma		$11^{\circ}C-20^{\circ}C$ (2)	10691	6.81	57269.63	10000- 11	
0°C		21°C-30°C (3)	14514	6.84	78995.78	136265.41	
2(21°C-30°C Max)		$31 + ^{\circ}C$ (4)	0	0.00	0.00		
D°1	MaxVar	x<-2°C (1)	1203	6.92	6576.60		
2(2)		$-2^{\circ}C \leq x \leq -1^{\circ}C$ (2)	6861	6.77	36677.42		
54		$0^{\circ}C(3)$	7826	6.89	42694.92	136579.50	432.80
		$1^{\circ}C \leq x \leq 2^{\circ}C$ (4)	8472	6.88	46191.76		
		$x > 2^{\circ}C(5)$	843	6.04	4438.80		



Level	Covariate	Covariate Group	No. of Patients	Mean LOS	WIC	Total WIC	WIC Gain
ĺ	All	$11^{\circ}C-20^{\circ}C(2)$	10691	6.81	57269.63	57269.63	
	MinTemp	0°C-10°C (1)	179	6.13	961.29		
fax g)	Same and	11°C-20°C (2)	10512	6.82	57122.54	58083.83	-814.20
3(21°C-30°C Max, 11°C-20°C Avg)		21°C-30°C (3)	0	0.00	0.00		
0.0	MaxVar	x<-2°C (1)	397	5.66	2036.82		ć.
C-3		$-2^{\circ}C \le x \le -1^{\circ}C$ (2)	2405	6.95	13061.90		
3(21°C-30° 11°C-20°C		$0^{\circ}C(3)$	2666	6.88	14272.56	57493.12	-223.49
3()		$1^{\circ}C \le x \le 2^{\circ}C$ (4)	4736	6.87	25550.60		
		$x > 2^{\circ}C(5)$	487	6.00	2571.25		
	All	21° C-30° C (3)	14514	6.84	78995.78	78995.78	8
200	MinTemp	0°C-10°C (1)	0	0.00	0.00		
fax g)		11°C-20°C (2)	9835	6.85	52787.28	78354.56	641.22
C Ma Avg)		$21^{\circ}\mathrm{C}\text{-}30^{\circ}\mathrm{C}(3)$	4679	6.84	25567.28		
0° 0°	MaxVar	x<-2°C (1)	806	7.54	4555.23		ž.
1° C-30° C-30° C		$-2^{\circ}C \le x \le -1^{\circ}C$ (2)	4456	6.68	23671.22		
3(21°C-30°C Max, 21°C-30°C Avg)		$0^{\circ}C(3)$	51 <mark>6</mark> 0	6.90	28290.46	78571.35	424.43
3(2)		$1^{\circ}C \le x \le 2^{\circ}C$ (4)	3736	6.88	20163.21		
		$x > 2^{\circ}C(5)$	356	6.10	1891.23		
Me	diTec	16/10/2	2019		160:	L-Università ta'	Malta

Level	Covariate	Covariate Group	No. of Patients	Mean LOS	WIC	Total WIC	WIC Gain
	All	31+°C (4)	12325	6.82	67056.27	67056.27	
	MinTemp	0°C-10°C (1)	0	0.00	0.00		
		11°C-20°C (2)	820	6.70	4466.70	67053.54	2.73
		21°C-30°C (3)	11505	6.83	62586.84		
(x)	AvgTemp	0°C-10°C (1)	0	0.00	0.00		
Ma		11°C-20°C (2)	0	0.00	0.00	00000 07	010.00
°.C		21°C-30°C (3)	11576	6.82	62203.93	66238.27	818.00
2(31+°C Max)		$31 + ^{\circ}C$ (4)	749	6.88	4034.35		
2(3)	MaxVar	x<-2°C (1)	907	6.96	4967.36	8	
		$-2^{\circ}C \leq x \leq -1^{\circ}C$ (2)	2746	6.79	14698.72		
		0°C (3)	2827	6.70	15140.27	66443.03	613.24
		$1^{\circ}C \leq x \leq 2^{\circ}C$ (4)	4342	6.90	23535.51		
		$x > 2^{\circ}C(5)$	1503	6.80	8101.17		

Level	Covariate	Covariate Group	No. of Patients	Mean LOS	WIC	Total WIC	WIC Gain
	All	$21^{\circ} C - 30^{\circ} C$ (3)	11576	6.82	62203.93	62203.93	,
	MinTemp	0°C-10°C (1)	0	0.00	0.00		
()		11°C-20°C (2)	820	6.70	4466.70	63023.76	-819.83
Max, C Avg)		21°C-30°C (3)	10756	6.83	58557.06		
Z O	MaxVar	x<-2°C (1)	820	7.04	<mark>4489.4</mark> 2	8	
		$-2^{\circ}C \le x \le -1^{\circ}C$ (2)	2546	6.80	13659.83		
3(31+°C 21°C-30°		2	85			62465.66	-261.73
3		0°C (3)	2827	6.70	15140.27		
		$1^{\circ}C \le x \le 2^{\circ}C$ (4)	4243	6.90	23001.58		
		$x > 2^{\circ}C(5)$	1140	6.68	6174.55		
		$31 + ^{\circ}C(4)$	749	6.88	4034.35	4034.35	
	MinTemp	0°C-10°C (1)	0	0.00	0.00		
		11°C-20°C (2)	0	0.00	0.00	4061.80	-27.45
ax,		21°C-30°C (3)	749	6.88	4061.80		
C Ma Avg)	MaxVar	x<-2°C (1)	87	6.20	485.00		
0.10		$-2^{\circ}C \le x \le -1^{\circ}C$ (2)	200	6.62	1074.44		
3(31+°C Max, 31+°C Avg)		$0^{\circ}C(3)$	0	0.00	0.00	4082.57	-48.23
3(31		$1^{\circ}C \le x \le 2^{\circ}C$ (4)	99	6.93	55 <mark>4.</mark> 99		
		$x > 2^{\circ}C(5)$	363	7.17	1968.14		

 Most significant prognostic factor affecting the patients' length of stay (LOS) is the maximum temperature.

- Most significant prognostic factor affecting the patients' length of stay (LOS) is the maximum temperature.
- The average temperature affects the patients' length of stay only when the maximum temperature rises beyond 20°C.

 The minimum temperature does not significantly affect the patients' length of stay.

- The minimum temperature does not significantly affect the patients' length of stay.
- Also, the maximum variability in the average temperature between one day and the next does not affect patients' length of stay as patients usually stay inside.

• These results might be different for different geographic regions due to different weather conditions and different genetic profile of inhabitants there.

Predictions and Accuracy Tests

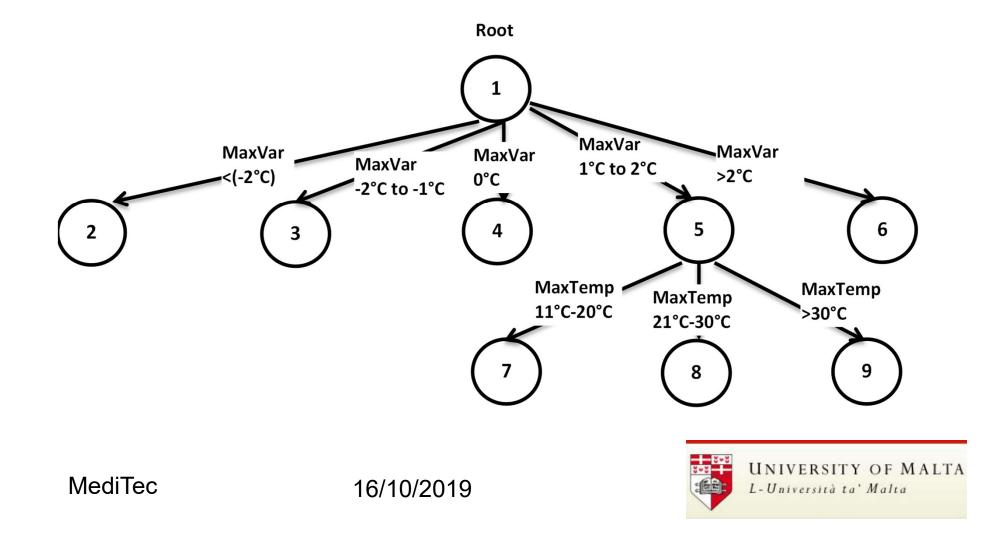
Group	No. of Patients		Predicted Mean LOS		Squared Error	Absolute Error	Percentage Error (%)
$MaxTemp(0^{\circ}C-10^{\circ}C)$	0		8.13	-	-	3173	
MaxTemp(11°C-20°C)	13406	7.19	6.83	-0.36	0.13	0.36	5.01
$\begin{array}{l} \text{MaxTemp}(21^{\circ}\text{C}\text{-}30^{\circ}\text{C}),\\ \text{AvgTemp}(11^{\circ}\text{C}\text{-}20^{\circ}\text{C}) \end{array}$	6003	7.01	6.81	-0.20	0.04	0.20	2.85
MaxTemp(21°C-°C30),AvgTemp(21°C-30°C), MinTemp(11°C-20°C)	5850	6.78	6.85	0.07	0.00	0.07	1.03
MaxTemp(21°C-30°C),AvgTemp(21°C-30°C), MinTemp(21°C-30°C)	4520	6.47	6.84	0.37	0.1 <mark>4</mark>	0.37	5.72
$\begin{array}{l} \text{MaxTemp}(31+^{\circ}\text{C}),\\ \text{AvgTemp}(21^{\circ}\text{C}-30^{\circ}\text{C}) \end{array}$	0	ē	6.82		ā		
$\begin{array}{l} \text{MaxTemp}(31+^{\circ}\text{C}), \\ \text{AvgTemp}(31+^{\circ}\text{C}) \end{array}$	4471	6.72	6.88	0.16	0.03	0.16	2.38

Level	Covariate	Covariate	No. of	Mean	WIC	Average	Total	WIC	
		Group	Records	Admissions		WIC	Average WIC	Gain	
	ALL	Root	721	91.04	6522.86	6522.86	6522.86		
	Min	0°C-10°C (1)	174	94.63	1653.37	5 <mark>51.12</mark>		5	
		$11^{\circ}C-20^{\circ}C(2)$	376	89.14	3421.33	1140.44	2249.21	4273.65	
	2	21°C-30°C (3)	181	89.41	1672.91	557.64	5	8	
	Max	$0^{\circ}C-10^{\circ}C(1)$	3	101.00	38.93	9.73		·	
		11°C-20°C (2)	306	92.59	2848.41	712.10	1000.91	690.81 4832.05	
		21°C-30°C (3)	283	89.07	2580.33	645.08	1690.81	4032.05	
(Root)		31+°C (4)	139	88.67	1295.56	323.89			
Ro	Avg	0°C-10°C (1)	49	98.65	495.38	123.84)	2	
1 (11°C- 20°C (2)	379	91.01	3490.43	872.61	1000 54	1000.00	
		21°C-30°C (3)	295	88.44	2685.31	671.33	1690.54	4832.32	
	15.	31+°C (4)	8	93.62	91.04	22.76			
	MaxVar	x<-2°C (1)	45	89.60	449.32	89.86			
		$-2^{\circ}C \leq x \leq -1^{\circ}C$ (2)	200	91.00	1867.44	373.49			
		0°C (3)	212	89.82	1956.63	391.33	1369.18	5153.68	
		$1^{\circ}C \leq x \leq 2^{\circ}C$ (4)	236	90.53	2186.84	437.37			
		$x > 2^{\circ}C$ (5)	38	92.87	385.68	77.14			

Level	Covariate	Covariate Group	No. of Records	Mean Admissions	WIC	Average WIC	Total Average WIC	WIC Gain
	All	$x < -2^{\circ} C(1)$	45	89.60	449.32	89.86	89.86	
	Min	0°C-10°C (1)	11	91.64	121.58	40.53	8	
(1))		11°C-20°C (2)	19	87.37	200.39	66.80	161.37	-71.51
		21°C-30°C (3)	15	90.93	162.15	54.05		
2°C	Max	0°C-10°C (1)	1	104.00	7.07	1.77	*	-30.25
V.		11°C-20°C (2)	20	90.90	211.72	52.93	100.11	
r, x		21°C-30°C (3)	14	85.93	150.35	37.59	120.11	
2(MaxVar, x<-2°C		$31 + ^{\circ}C(4)$		90.70	111.31	27.83		
Mao	Avg	0°C-10°C (1)	6	91.83	68.79	17.20	8	
2()		11°C-20°C (2)	20	88.40	210.66	52.66	110.40	00.00
		21°C-30°C (3)	18	90.33	191.81	47.95	119.49	-29.63
		31+°C (4)	1	87.00	6.71	1.68		

Level	Covariate	Covariate Group	No. of Records	Mean Admissions	WIC	Average WIC	Total Average WIC	WIC Gain
	All	$-2^{\circ}C \leq x \leq -1^{\circ}C(2)$	200	91.00	1867.44	373.49	373.49	
(2))	Min	0°C-10°C (1)	44	96.32	454.40	151.47		
		11°C-20°C (2)	106	89.50	1003.42	334.47	650.97	-277.48
-1°C		21°C-30°C (3)	50	89.48	495.09	165.03		
\vee I	Max	0°C-10°C (1)	1	97.00	6.93	1.73	487.78	-114.29
× VI		11°C-20°C (2)	92	92.34	896.50	224.12		
		21°C-30°C (3)	76	90.28	730.09	182.52		
-2°		31+°C (4)	31	88.58	317.61	79.40		
Var	Avg	0°C-10°C (1)	1	99.63	175.32	43.83		
ax		11°C-20°C (2)	103	91.29	992.95	248.24	484.07	111 40
2(MaxVar,-2°C		21°C-30°C (3)	79	88.63	761.01	190.25	484.97	-111.48
		31+°C (4)	2	100.00	10.59	2.65		

Level	Covariate	Covariate Group	No. of Records	Mean Admissions	WIC	Average WIC	Total Average WIC	WIC Gain
2	All	$0^\circ C$ (3)	212	89.82	1956.63	391.33	391.33	
	Min	0°C-10°C (1)	60	93.87	593.16	197.72		
		11°C-20°C (2)	109	88.20	1025.83	341.94	682.65	-291.33
ľ	Ë İ.	21°C-30°C (3)	43	88.28	428.98	142.99	l i	
(3))	Max	0°C-10°C (1)	1	102.00	7.17	1.79		-119.34
		11°C-20°C (2)	90	92.08	864.84	216.21	510.66	
0°C		21°C-30°C (3)	89	87.93	844.45	211.11		
		$31 + ^{\circ}C(4)$	32	88.34	326.19	81.55		
2(MaxVar,	Avg	0°C-10°C (1)	14	100.79	154.78	38.70		2
Max		11°C-20°C (2)	108	89.30	1021.80	255.45	507.59	-116.27
2(1)		21°C-30°C (3)	90	88.74	853.79	213.45		
		$31 + ^{\circ}C(4)$	0	0.00	0.00	0.00		


Level	Covariate	Covariate Group	No. of Records	Mean Admissions	WIC	Average WIC	Total Average WIC	WIC Gain
*	All	$1^{\circ}C \leq x \leq 2^{\circ}C(4)$	236	90.53	2186.84	437.37	437.37	
(4))	Min	0°C-10°C (1)	50	93.86	507.91	169.30		
		11°C-20°C (2)	128	89.68	1208.86	402.95	761.50	-324.13
$\leq 2^{\circ}C$		21°C-30°C (3)	58	89.56	567.72	189.24		
	Max	0°C-10°C (1)	0	0.00	0.00	0.00		68.02
× VI		11°C-20°C (2)	92	92.95	896.15	23.24	200.27	
S		$21^{\circ}C-30^{\circ}C$ (3)	95	89.18	899. <mark>2</mark> 9	224.82	369.35	
-		31+°C (4)	49	88.61	485.15	121.29		
Var	Avg	0°C-10°C (1)	10	99.00	113.07	28.27	3	
[ax]		11°C-20°C (2)	134	91.77	1271.13	317.78	K00.00	100.00
2(MaxVar,		21°C-30°C(3)	91	87.68	863.45	215.86	563.66	-126.29
		31+°C (4)	1	99.00	6.97	1.74		

Level	Covariate	Covariate Group	No. of Records	Mean Admissions	WIC	Average WIC	Total Average WIC	WIC Gain
(2))	All	11- 20 (2)	92	92.95	896.15	23.24	23.24	2
	Min	0°C-10°C (1)	49	93.78	4 98.37	124.59		ŝ
Max		11°C-20°C (2)	43	9 <mark>2.</mark> 00	434.78	108.69	233.29	-210.05
(4),]		21°C-30°C (3)	0	0.00	0.00	0.00		
r (4	Avg	0°C-10°C (1)	49	93.78	498.37	124.59	233.29	÷.
3(MaxVar		11°C-20°C (2)	43	92.00	434.78	108.69		-210.05
Max		21°C-30°C (3)	0	0.00	0.00	0.00		-210.05
3()		$31 + ^{\circ}C(4)$	0	0.00	0.00	0.00		
(3))	All	21-30 (3)	95	89.18	899.29	224.82	224.82	2
	Min	0°C-10°C (1)	1	8	BAD WIC			ę.
Mar		11°C-20°C (2)	81	89.05	773.46	257.82	BAD WIC	BAD WI
I),]		21°C-30°C (3)	13	89.31	141.15	47.05		«
r (4	Avg	0°C-10°C (1)	0	0.00	0.00	0.00		×.
3(MaxVar (4), Max	22.5	11°C-20°C (2)	52	91.08	512.81	128.20	005-04	10.11
		21°C-30°C (3)	43	86.88	428.13	107.03	235.24	-10.41
3(1		$31 + ^{\circ}C(4)$	0	0.00	0.00	0.00		

Level	Covariate	Covariate Group	No. of Records	Mean Admissions	WIC	Average WIC	Total Average WIC	WIC Gain
(1	All	31+(4)	49	88.61	485.15	121.29	121.29	
x (Min	0°C-10°C (1)	0	0.00	0.00	0.00		
Max		11°C-20°C (2)	4	77.50	46.13	15.38	164.93	-43.64
3(MaxVar (4), Max (4))		21°C-30°C (3)	45	89.60	448.66	149.55		
r (4	Avg	0°C-10°C (1)	0	0.00	0.00	0.00	3	
cVa		11°C-20°C (2)	0	0.00	0.00	0.00	BAD WIC	DAD W
dax		21°C-30°C (3)	48	88.40	476.47	119.12		BAD WI
3()		$31 + ^{\circ}C(4)$	1		BAD WIC			
(5))	All	$x > 2^{\circ} C (5)$	38	92.87	385.68	77.14	77.14	
õ	Min	0°C-10°C (1)	9	99.33	103.12	34.37	· · · · · ·	
>2°C		11°C-20°C (2)	14	91.29	151.95	50.65	138.99	-61.85
×		21°C-30°C (3)	15	90.47	161.90	53.97		
ar,	Max	0°C-10°C (1)	0	0.00	0.00	0.00	6	<
VXU		11°C-20°C (2)	12	98.50	133.30	33.32	104.15	07.01
2(MaxVar, x		21°C-30°C (3)	9	93.78	102.12	25.53	104.15	-27.01
0		31+°C (4)	17	88.41	181.18	45.29		
	Avg	0°C-10°C (1)	3	96.00	38.63	9.66	~	-
	Acados -	11°C-20°C (2)	14	98.64	154.06	38.52	105 00	00.15
		21°C-30°C (3)	17	88.06	181.07	45.27	105.29	-28.15
		31+°C (4)	4	90.75	47.39	11.85		

 Most significant prognostic factor affecting the number of admissions is the maximum variability in the average temperature between one day and the next.

- Most significant prognostic factor affecting the number of admissions is the maximum variability in the average temperature between one day and the next.
- The maximum temperature affects the number of admissions only when the average temperature increases by 1°C-2°C than the previous day.

• The minimum temperature and average temperature do not affect number of admissions.

- The minimum temperature and average temperature do not affect number of admissions.
- These results might be different for different geographic regions due to different weather conditions and different genetic profile of inhabitants there.

Predictions and Accuracy Tests

Group	No. of Records	Actual Mean Adm.	Predicted Mean Adm.	THE REAL PROPERTY AND A RE	Squared Error	Absolute Error	Percentage Error (%)
MaxVar(x<-2°C)	31	92.13	89.60	-2.53	6.40	2.53	2.75
$MaxVar(-2^{\circ}C \leq x \leq -1^{\circ}C)$	99	92.34	91.00	-1.34	1.80	1.34	1.45
$MaxVar(x = 0^{\circ}C)$	93	92.77	89.82	-2.95	8.70	2.95	3.18
MaxVar(x>2°C)	19	97.63	92.87	-4.76	22.66	4.76	4.88
$\frac{MaxVar(1^{\circ}C \leq x \leq 2^{\circ}C)}{MaxTemp (11^{\circ}C-20^{\circ}C)}$	42	100.95	92.95	-8.00	64.00	8.00	7.92
$\frac{\text{MaxVar}(1^{\circ}\text{C} \leq x \leq 2^{\circ}\text{C})}{\text{MaxTemp} (21^{\circ}\text{C}-30^{\circ}\text{C})}$	<mark>5</mark> 4	91.63	89.18	-2.45	6.00	2.45	2.67
$\begin{array}{l} MaxVar(1^{\circ}C \leq x \leq 2^{\circ}C), \\ MaxTemp (31+^{\circ}C) \end{array}$	27	95.48	88.61	-6.87	47.20	6.87	7.20

Accuracy test for all predictions

		MSE	RMSE	MAD	BIAS
LOS	W eather	0.08	0.28	0.26	-0.09
105	Personal Characteristics	1.15	1.07	0.74	-0.69
A	Weather	16.17	4.02	3.37	-3.37
Admissions	Personal Characteristics	1.38	1.17	0.96	-0.82

MSE: Mean Square Error, RMSE: Root Mean Square Error, MAD: Mean Absolute Deviation BIAS: Bias

MediTec

16/10/2019

Conclusions

- We can use phase-type survival tree analysis to
 - Effectively prognosticate survival data and

Conclusions

- We can use phase-type survival tree analysis to
 - Effectively prognosticate survival data and
 - Cluster survival data into groups of patients following homogeneous patient pathways.

Conclusions

• Our models can be used to forecast bed occupancy and the requirements.

- Our models can be used to forecast bed occupancy and the requirements.
- The LOS can be predicted at admission by the use of this model.

- Our models can be used to forecast bed occupancy and the requirements.
- The LOS can be predicted at admission by the use of this model.
- The number of admissions can be forecasted by the patients' characteristics.

 These models can also be used to characterize the effect of weather on LOS and admissions.

- These models can also be used to characterize the effect of weather on LOS and admissions.
- We can also use these models to predict effect of other factors affecting LOS and admissions.

 These forecasts can help us better designing policies to ensure optimal utilization of scarce health resources.

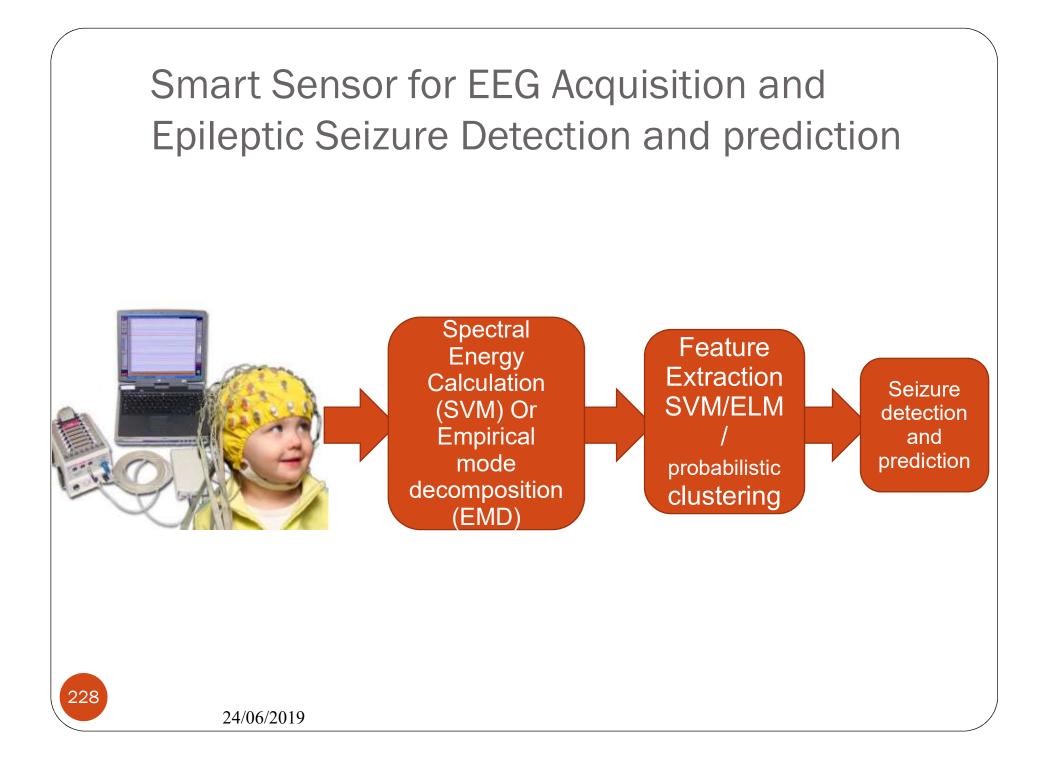
- Garg L, Dauwels J, Earnest A, Pang L (2013). Tensor based methods for handling missing data in quality-of-life questionnaires. IEEE Journal of Biomedical and Health Informatics. In press. doi: 10.1109/JBHI.2013.2288803. Impact Factor: 1.978, Journal H-Index(SJR:1996-2012): 55, SJR(2012):0.877.
- Garg L, McClean SI, Meenan BJ, Barton M, Fullerton K (2012). Intelligent patient management and resource planning for complex, heterogeneous, and stochastic healthcare systems. In press. IEEE Transactions on Systems, Man, and Cybernetics--Part A: Systems and Humans 42(6): 1332 – 1345. Impact Factor: 2.093, Journal H-Index(SJR:1996-2011): 54, SJR(2011):0.085, Scopus SNIP(2011):3.594, Scopus citations: 2, ISI Web of Knowledge Citations: 1, scHolar index: 2.
- Garg L, McClean SI, Meenan BJ, Barton M, Fullerton K (2011). An Extended Mixture Distribution Survival Tree for Patient Pathway Prognostication. Communications in Statistics: Theory and Methodology. 42(16):2912-2934. Impact Factor: 0.351, Journal H-Index(SJR:1996-2011): 24, SJR(2011):0.035, Scopus SNIP(2011):0.550.
- Barton M, McClean SI, Gillespie J, Garg L, Wilson D, Fullerton K (2012). Is it beneficial to increase the provision of thrombolysis?- A discrete-event simulation model, QJM: An International Journal of Medicine.105(7),(art. no. hcs036):665-673. Impact Factor: 2.146, Journal H-Index(SJR:1993-2011): 71, SJR(2011):0.18, Scopus SNIP(2011):0.897, Scopus citations:3, ISI Web of Knowledge Citations: 1,scHolar index: 2.
- Garg L, McClean SI, Meenan BJ, Millard PH (2011). Phase-type survival trees and mixed distribution survival trees for clustering patients' hospital length of stay. INFORMATICA. 22(1): 57-72. Impact Factor: 1.786, Journal H-Index(SJR:1996-2010): 15, SJR(2011):0.048, Scopus SNIP(2011):1.814, Scopus citations: 8, ISI Web of Knowledge Citations: 7, scHolar index: 10.

- McClean SI, Barton M, Garg L, Fullerton K (2011). A Modeling framework that combine Markov models and discrete event simulation for stroke patient care. ACM Transactions on Modelling and Computer Simulation (TOMACS), 21(4). Impact Factor: 0.684, Journal H-Index(SJR:1991-2009): 26, SJR(2011): 0.043, Scopus SNIP(2011):2.053, ISI Web of Knowledge Citations: 2, Scopus citations: 4, scHolar citations: 6.
- Jahangirian M, Eldabi T, Garg L, Jun T, Naseer A, Patel B, Stergioulas L, Young TP (2011). A Rapid Review Method For Extremely Large Corpora of Literature: Applications to the domains of Modelling, Simulation, and Management. International Journal of Information Management (IJIM), 31(3):234-243. Impact Factor: 1.554, Journal H-Index(SJR:1986-2010): 32,SJR(2011):0.043, Scopus SNIP(2011):2.517, Scopus citations: 3,ISI Web of Knowledge Citations: 2, scHolar citations: 5.
- Gillespie J, McClean SI Scotney B, Garg L, Barton M, Fullerton K (2011). Costing Hospital Resources for Stroke Patients using Phase-type Models. Health Care Management Science. 14(3):279-291. Impact Factor: 0.394, SJI(2011): 0.063, Scopus SNIP(2011): 1.169, Journal H-Index(SJR:1998-2009): 23, Scopus citations: 1, scHolar citations: 3.
- Papadapoulou A, Tsaklidis G, McClean SI, Garg L (2011). On the moments and the distribution of the cost of a semi Markov model for healthcare systems. Methodology and Computing in Applied Probability.14(3):717-737. Impact Factor: 0.774, Journal H-Index(SJR:2004-2010): 11, SJR(2011):0.040, Scopus SNIP(2011):0.718.
- Garg G, Prasad G, Garg L, Coyle D (2011). Gaussian Mixture Models for Brain Activation Detection from fMRI Data, International Journal of Bioelectromagnetism. 13(4):255-260, scHolar citations: 2.

- Garg L, McClean SI, Meenan BJ, Millard PH (2010). A non-homogeneous discrete time Markov model for admission scheduling and resource planning in a care system. Health Care Management Science. 13(2):155–169. Impact Factor: 0.394, Journal H-Index(SJR:1998-2009): 23, SJI(2011):0.063, Scopus SNIP(2011):1.169, Scopus citations: 8, ISI Web of Knowledge Citations: 5, scHolar citations: 18.
- Garg L., McClean SI, Barton M, Meenan BJ and Fullerton K (2010). The extended mixture distribution survival tree based analysis for clustering and patient pathway prognostication in a stroke care unit. International Journal of Information Sciences and Application. 2(4): 671-675.
- Garg L, McClean SI, Meenan BJ, Millard PH (2009). Non-homogeneous Markov Models for Sequential Pattern Mining of Healthcare Data. IMA journal Management Mathematics. 20(4): 327-344. Journal H-Index(SJR:2001-2009): 11,SJR(2011):0.033, Scopus SNIP(2011):0.671, Scopus citations: 1, ISI Web of Knowledge Citations: 2, scHolar citations: 4.
- Garg L, McClean SI, Barton M (2008). Is Management Science doing Enough to Improve Healthcare?. International Journal of Human and Social Sciences 3(2): 99-103. scHolar citations: 4.
- Garg L, McClean SI, Meenan BJ, Millard PH (2009). A phase type survival tree model for clustering patients according to their hospital length of stay. Proceedings of the XIII International Conference on Applied Stochastic Models and Data Analysis (ASMDA 2009), pp. 497-502, Eds: Leonidas Sakalauskas, Christos Skiadas, Edmundas K. Zavadskas, ISBN: 978-9955-28-463-5, Publisher: Vilnius Gediminas Technical University Press. scHolar citations: 3.

- Barton M, McClean SI, Garg L, Fullerton K (2009). Modelling Stroke Patient Pathways using Survival Analysis and Simulation Modelling. Proceedings of the XIII International Conference on Applied Stochastic Models and Data Analysis (ASMDA 2009), pp. 370-373, Eds: Leonidas Sakalauskas, Christos Skiadas, Edmundas K. Zavadskas, ISBN: 978-9955-28-463-5, Publisher: Vilnius Gediminas Technical University Press. scHolarcitations: 4.
- McClean SI, Garg L, Barton M, Fullerton K, Millard PH (2009). Using Markov Systems to plan Stroke Services. In Intelligent Patient Management (Eds. McClean, S.; Millard, P.; El-Darzi, E.; Nugent, C.D.), Book Series: Studies in Computational Intelligence, Vol. 189. pp. 241-256. Journal H-Index(SJR:1998-2010): 10, SJI(2011):0.029, Scopus SNIP(2011):0.310, Scopus citations: 2, ISI Web of Knowledge Citations: 4, scHolar citations: 3.
- McClean SI, Millard PH, Garg L (2008). Using Markov Models for Decision Support in Management of High Occupancy Hospital Care. In Intelligent Techniques and Tools for Novel System Architectures (P. Chountas, I. Petrounias, J. Kacprzyk Eds), Springer's book series Studies in Computational Intelligence (SCI). Vol. 109/2008. pp. 187–199. Journal H-Index(SJR:1998-2010): 10, SJI(2011):0.029, Scopus SNIP(2011):0.310.
- McClean SI, Garg L, Meenan BJ, Millard PH. (2007). Non-Homogeneous Markov Models for Performance Monitoring in Healthcare. (In C.H. Skiadas, Eds.) Recent Advances In Stochastic Modelling and Data Analysis. World Scientific Publishing, pp. 146-153. scHolar citations: 4.

Smart Sensor for EEG Acquisition and Epileptic Seizure Detection and prediction


With

Prof Justin Dauwels, Nanyang Technological University, Singapore Prof Alok Mishra, Atilim University, Turkey Prof K Ramesh, Karnataka State Women's University, Vijayapura, India Dr Gaurav Garg, Ulster University, UK Students: Ms Sylvia Bugeia Mr Eliazar Elisba Audu Ms Noela Galea Ms Yezi

Ms Sylvia Bugeja, Mr Eliazar Elisha Audu, Ms. Noela Galea, Ms. Yezi Ali Kadhim, Mr Sean Bugeja, Mr. James Bonello

24/06/2019

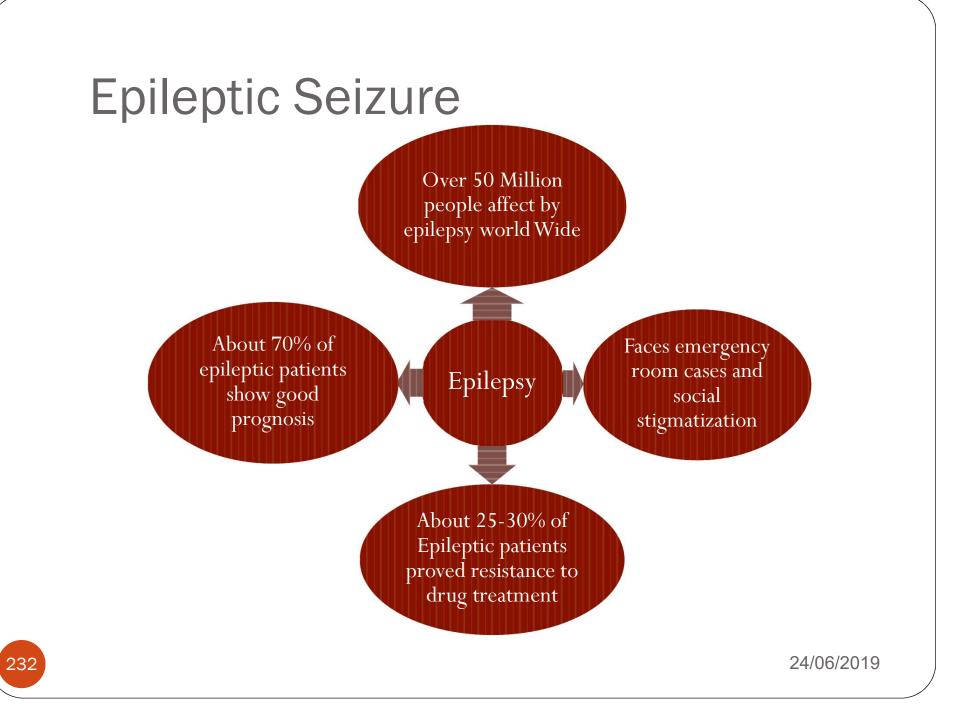
Smart Sensor for EEG Acquisition and Epileptic Seizure Detection

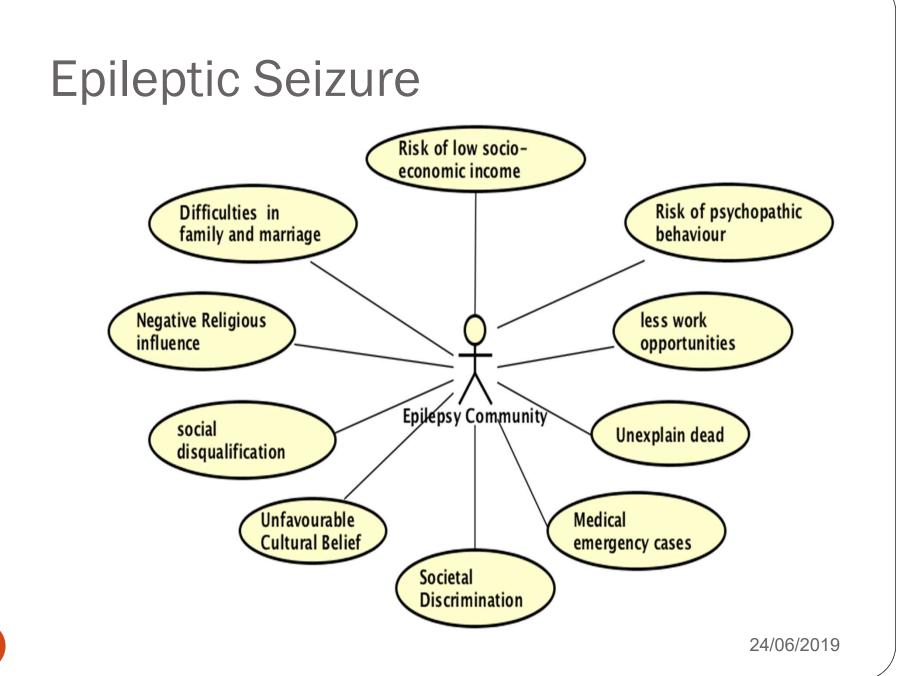
•**Collaborative partners**: Nanyang Technological University, Singapore and Massachusetts General Hospital, MIT, USA.

•Approach: Singular Vector Machine, Extreme learning machine, probabilistic clustering, Empirical mode decomposition.

• Funding Body: MNN-RIDT

•Data: Massachusetts General Hospital, MIT, USA.


Epilepsy


- Epilepsy is
- A medical condition
- Associated with recurrent seizures,
- Disrupt normal electrical function of the brain
- Due to excessive synchronization (hypersynchronization) of cortical neural network.

Epilepsy

• Has profound effects on the state of consciousness, cognitive function and bodily motor control of the affected persons at the onset of seizures.

Epileptic Seizure Detection and prediction

Clinical management of epilepsy:

• Through the application of signal processing and machine learning techniques.

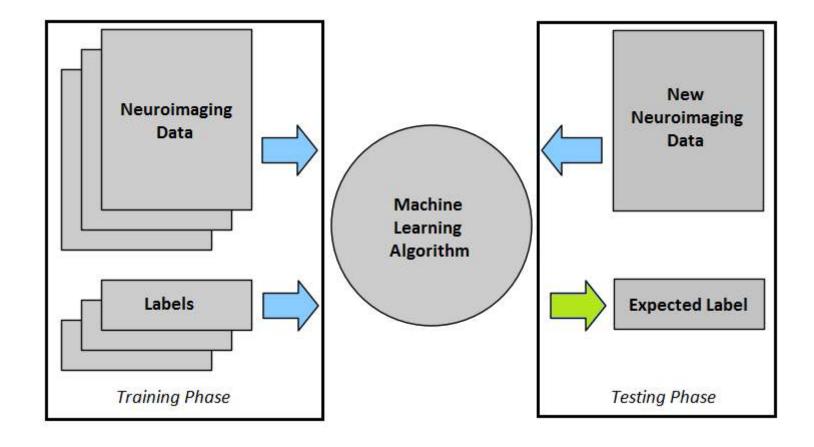
Epileptic Seizure Detection and prediction

Epileptic seizure detection:

• To develop systems which monitor patient EEG, learn to classify whether it is seizure or nonseizure EEG and act upon such a decision Epileptic Seizure Detection and prediction

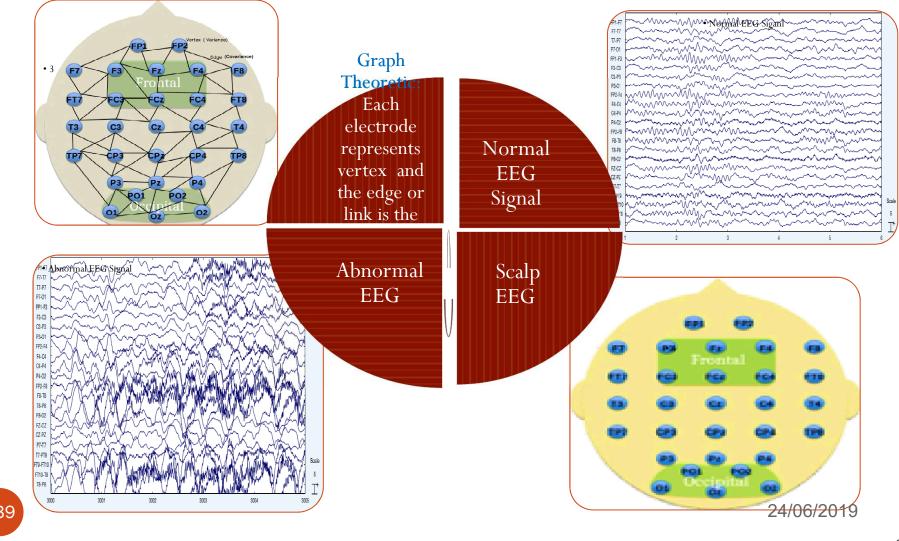
Epileptic seizure prediction:

• To develop systems which monitor patient EEG, learn to predict whether the present signal is indicating the provability of occurrence of a seizure in a given time.

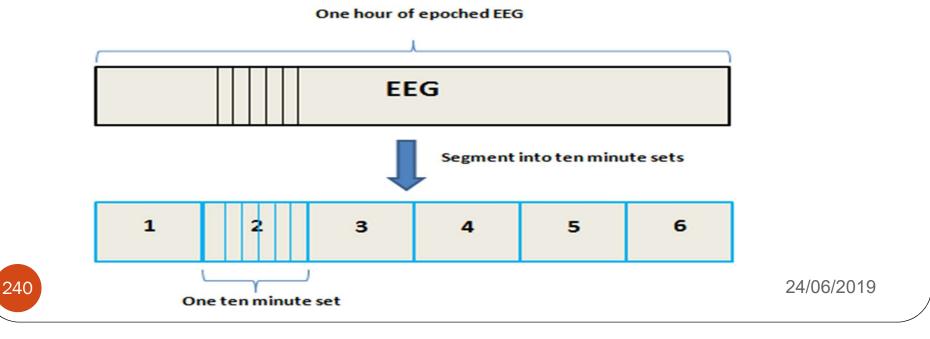

Epileptic Seizure Prediction

- Use signal processing and machine learning techniques
 - Extract features -> Create feature space -> Train -> Learn

 Patient-specific vs. Patient-non-specific systems
 Patient-non-specific systems do not perform well across a large patient population, therefore not practical

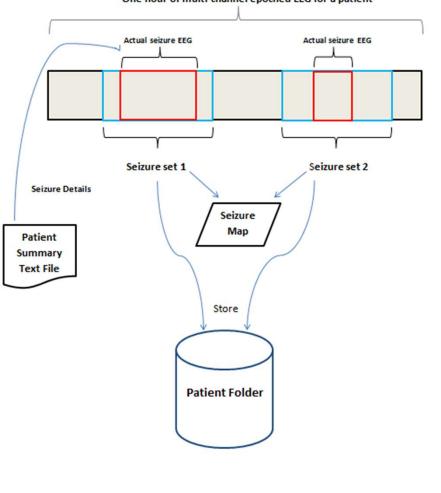


Epileptic Seizure Prediction


24/06/2019

Epileptic Seizure Prediction

Extracting seizure and non-seizure sets


- Each hour is first segmented into 2-second epochs of EEG
- Extracting non-seizure sets is very simple
 - Divide non-seizure hour into smaller sets of some decide equivalent length (eg. 10 minutes)
 - 2. Store selected sets in patient folder

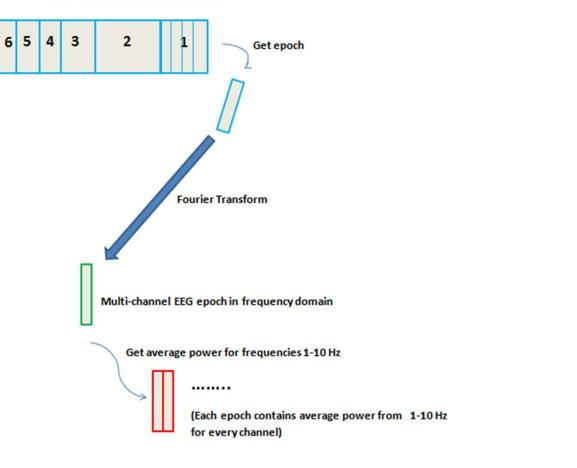
Extracting seizure and non-seizure sets

- Extracting seizure sets is less trivial
 - May have multiple seizures recorded in one hour of EEG
- Get seizure hour (For every seizure in the hour)
 - 1. Extract set of appropriate length (eg. 10 minutes) such that no other seizure EEG is contained within the set
 - 2. Store details of acquired seizure set in reference table
 - 3. Store seizure set in patient folder
- This method acquires smaller sets that still contain the necessary seizure EEG
- Patient folder will contain the necessary EEG which should constitute the feature space rather than the whole hours

Extracting seizure and non-seizure sets

One hour of multi-channel epoched EEG for a patient

24/06/2019


Extracting features

- The power is calculated from the frequency domain by squaring the amplitude
- For every EEG epoch
 - Convert from the time domain to the frequency domain
 - Uses Fourier Transform
 - Take the frequencies over the range {1, 2, 3, ..., 10}
 - Calculate the total power over these frequencies
 - Take the average
- Why the lower frequencies only?
 - Seizures generally act on the lower frequencies of EEG
- So the feature will be the average power over 1-10 Hz

24/06/2019

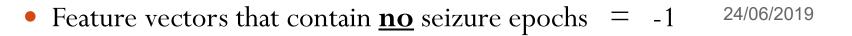
Extracting features

Multi-channel EEG in time domain

24/06/2019

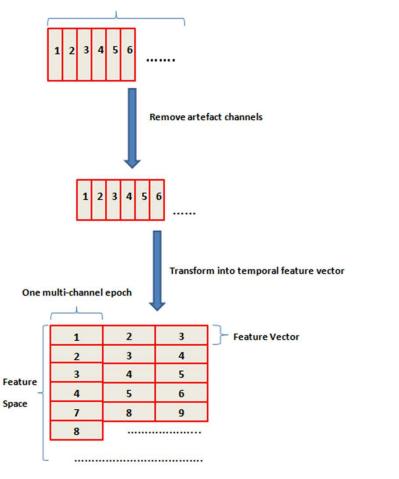
Creating the feature space

- Created by concatenating the patient folder sets
- Vary in size across different patients
 - Depending on number of channels and specified set length
- Represents temporal evolution of average power
 - 3-component feature vector containing 3 consecutive epochs
 - The "patient-specific" feature of the training set
- For every set in patient folder
 - Remove artefact channels
 - Transform into temporal representation
 - Add to feature space


24/06/2019

Creating the feature space

• Supervised learning approach


• Created by using seizure start and end details from the reference table

• Feature vectors that contain seizure epochs = 1

Creating the feature space

Set n from chbXX subset

24/06/2019

Training

• For every patient we now have a feature space and its label vector

- SVM used for training on these structures
 - Provided by the supervisor

• Applies 3-fold cross validation

24/06/2019

Software and data used

- Method applied on CHB-MIT EEG datasets (as in Shoeb et. al.)
 - Pediatric EEG
- EEGLab is a toolbox plugin for MATLAB
- EEGLab used for visualisation, manipulation and processing of EEG data
- MATLAB used for building input structures and SVM training

Results: Evaluation Criteria

- Sensitivity
 - percentage of seizure epochs correctly detected
- Latency

- the delay between the actual start of the seizure (or seizure onset) and the time it took the classier to react
- Number of False Positives (Selectivity)
 - number of non-seizure epochs falsely classified as seizure epochs
- Results are prioritized by sensitivity followed by a tradeoff between latency and false positive number

Results

	FYP	Shoeb et. al.
Sensitivity	92.39%	96%
Latency	3.72 seconds	4.6 seconds
Selectivity	91.55%	
Total number of hours used	49.48 hours	916 hours

Another method

- The proposed method creates a simple, yet very effective training set acquisition for epileptic seizure detection making the classifier's training phase faster.
- The proposed method was tested using CHB-MIT database, a dataset of 977 hours of EEG data containing 192 seizure instances from 22 pediatric patients collected at the Children's Hospital, Boston.

Results

	10-Minute Subsets		20-Minute Subsets		30-Minutes Subset		Shoeb et al. ^[2]
	SVM	ELM	SVM	ELM	SVM	ELM	results
Sensitivity(%)	95.33	99.48	95.42	99.48	97.98	98.99	96%
Specificity(%)	87.11	74.21	89.90	77.16	83.73	81.39	_
Latency(Seconds)	3.18	0.97	2.88	0.97	2.95	1.26	3

24/06/2019

Epileptic Seizure localization

- If we can detect or predict seizure onsets by using the less number of channels (ideally only one)
- It will help us in making the seizure detection and prediction energy efficient.

24/06/2019

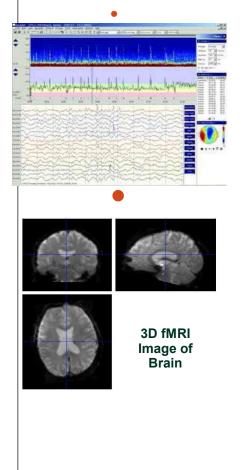
Smart Sensor for EEG Acquisition and Epileptic Seizure Detection More info:

•Agarwal A, Garg L, Audu EE, Pachori RB, and Dauwels J (2019) Early detection of epileptic seizures based on scalp EEG signals, In: R.S. Hegadi and K.C. Santosh (Eds.) Medical imaging: Use of AI, Image Recognition and Machine Learning Techniques, Elsevier.

•Bonello J, Garg L, Garg G, Audu EE (2018). Effective Data Acquisition for Machine Learning Algorithm in EEG Signal Processing. In Soft Computing: Theories and Applications (pp. 233-244). Springer, Singapore.

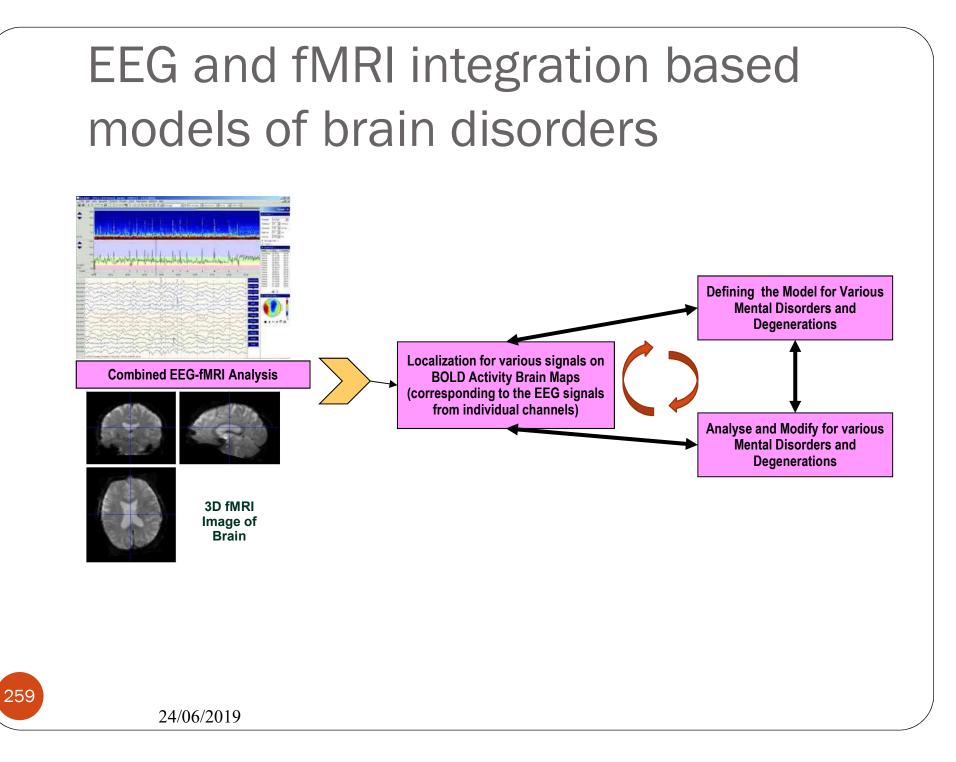
Smart Sensor for EEG Acquisition and Epileptic Seizure Detection More info:

•Bugeja S, Garg L, Audu EE (2016) A novel method of EEG data acquisition, feature extraction and feature space creation for Early Detection of Epileptic Seizures, 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC-2016). Orlando, Florida USA, August 16-20, 2016.


•Bugeja S, Garg L (2015) Application of Machine Learning Techniques for the modelling of EEG data for diagnosis of Epileptic Seizures, The 3rd Workshop on Recognition and Action for Scene Understanding (REACTS 2015) Valletta, Malta, September 5 2015.

Smart Sensor for EEG Acquisition and Epileptic Seizure Detection More info:

•37. Agrawal A, Garg L, Dauwels J (2013) Application of empirical mode decomposition algorithm for epileptic seizure detection from scalp EEG, The 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'13) Osaka, Japan, 3-7 July 2013.


Audu EE, Garg L, Falzon O, Giovanni GD (2017), Applications of machine learning in energy efficient, real-time, monitoring, prediction, detection and management of seizure: Localization of Abnormal (Seizure) EEG Source, Mediterranean Neuroscience Society – 6th Conference 2017, St Julian's Malta, June 12 – 15, 2017

EEG and fMRI integration based models of brain disorders

Electroencephalogram (EEG) Pros: Fast Temporal Response Cons: Poor Spatial Resolution (CPP and 2-D)

functional Magnetic Resonance Imaging(fMRI)
Pros: Good Spatial Resolution (3D)
Cons: Slow BOLD transient response

EEG and fMRI integration based models of brain disorders

•Collaborative partners: Intelligent Systems Research Centre, University of Ulster, UK, Nanyang Technological University, Singapore

•Funding: Northern Ireland Department for Education and Learning

•Approach: Probabilistic clustering, cluster analysis, functional analysis, convolution, SVM, ELM, factor analysis, latent class model (LCM)

EEG and fMRI integration based models of brain disorders

More info:

• Garg G, Prasad G, **Garg L**, Coyle D (2011). <u>Gaussian Mixture Models for</u> <u>Brain Activation Detection from fMRI Data</u>, <u>International Journal of</u> <u>Bioelectromagnetism</u>. 13(4):255-260.

•Garg G, Girijesh P, Damien C (2013). <u>Gaussian Mixture Model-based</u> <u>noise reduction in resting state fMRI data</u>. Journal of neuroscience methods. 215(1):71-77.

Predicting Neurological Disorder via Social Media

24/06/2019

Having anxiety and depression...

Depression: Just lay in bed all day and do nothing. You're life is worthless anyway.

Met Okay.

Anxiety: What the hell are you doing? You need to study or you'll fail all your classes, drop out of school, and end up living on the street with no friends!!

Depression: No stay here with me. Met 32222

24/06/2019

Predicting Neurological Disorder via Social Media

•Collaborative partners: Jiwaji University Gwalior

•Approach: CES-D screening test, Social media analytics, Major Depressive Disorder (MDD) classifier, Probabilistic clustering, cluster analysis, functional analysis, convolution, SVM, ELM, factor analysis, latent class model (LCM)

L-Università

264

Web-based tools for Missing data handling in medical questionnaires

Funding body: Nanyang Institute of Technology in Health & Medicine (NITHM), Singapore, University of Malta, Malta

Medical questionnaires with missing data

 Numeri 1
 Numeri desarra
 Numeri desarr

CP based collaborative filtering for missing data imputation

Completed

medical questionnaires

24/06/2019

265

Web-based tools for Missing data handling in medical questionnaires

Collaborative partners:

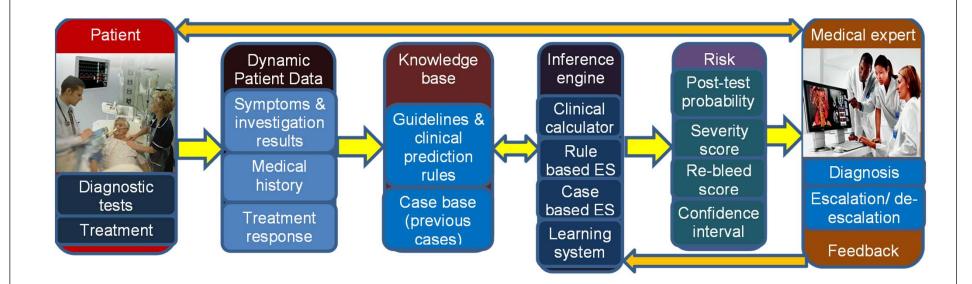
Lalit Garg, Justin Dauwels¹, Arul Earnest^{2,3}, Leong Khai Pang³

¹Nanyang Technological University, Singapore

²Duke-NUS Graduate Medical School, Singapore

³Tan Tock Seng Hospital (TTSH), Singapore

More info...

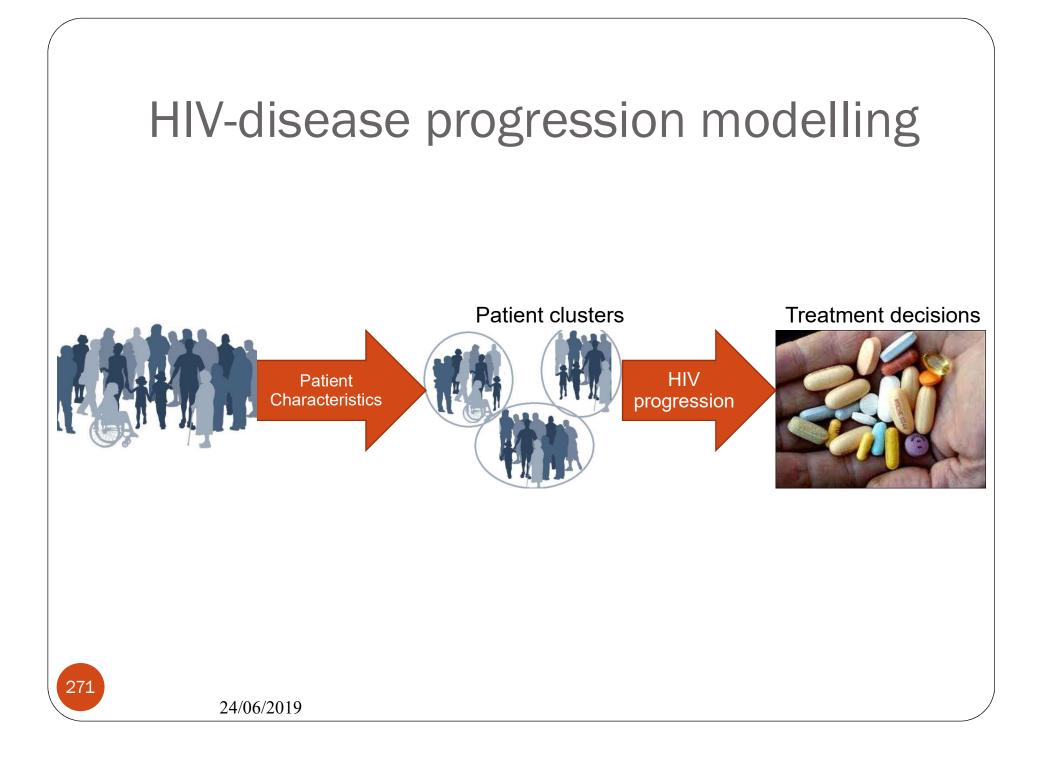

- **Garg L**, Dauwels J, Earnest A, Pang L (2013) Tensor based methods for handling missing data in quality-of-life questionnaires. IEEE Journal of Biomedical and Health Informatics. 18(5):1571 1580.
- Asif MT, Srinivasan K, Garg L, Dauwels J, Jaillet P (2013) Low-dimensional Models for Missing Data Imputation in Road Networks, ICASSP 2013, accepted. http://web.mit.edu/jaillet/www/general/missingdata_final.pdf.

• <u>http://lalitgarg.weebly.com/missingdatahandlingproject.html</u>

More info...

- Dauwels J, **Garg L**, Earnest A, Pang LK (2012). Tensor Factorizations for Missing Data Imputation in Medical Questionnaires, The 37th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, March 25 - 30, 2012.
- Dauwels J, **Garg L**, Earnest A, Pang LK (2011). Handling Missing Data in Medical Questionnaires Using Tensor Decompositions. The Eighth International Conference on Information, Communications, and Signal Processing (ICICS 2011). Singapore 13-16 December, 2011.

MDSS for managing acute upper gastrointestinal bleeding


269

MDSS for managing acute upper gastrointestinal bleeding

•**Collaborative partners**: Nanyang Technological University and Tan Tock Seng Hospital, Singapore.

•Data: Tan Tock Seng Hospital, Singapore.

•Approach: Pattern analysis and matching, Machine learning, rule based systems.

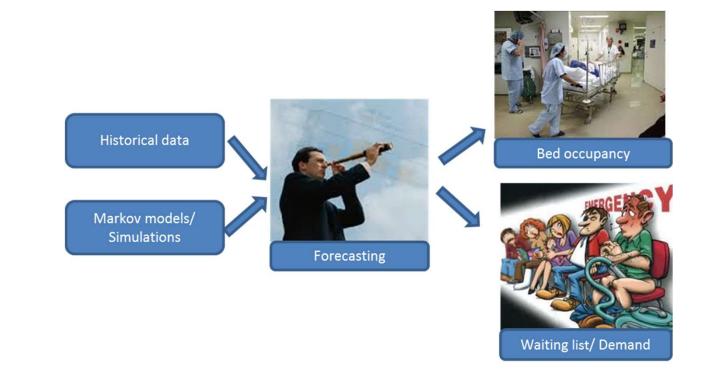
HIV-disease progression modelling

•**Collaborative partners**: University of Ulster, UK and University of Cagliari, Italy.

•Approach: Phase type survival tree analysis, survival analysis, Markov process model, Bayesian Analysis

•Data: Istituto Superiore di Sanità, Roma, Italy

HIV-disease progression modelling


•More info:

•Garg, L., Masala G., McClean S.I., Micocci M., Cannas G. (2012). Using phase type distributions for modelling HIV disease progression, Computer-Based Medical Systems (CBMS), 2012 25th International Symposium on, 20-22 June 2012. doi: 10.1109/CBMS.2012.6266408.

•Garg L, McClean SI, Meenan BJ, Millard PH (2011). Phase-type survival trees and mixed distribution survival trees for clustering patients' hospital length of stay. INFORMATICA. 22(1): 57-72.

Hospital bed occupancy and requirements forecasting

274

Hospital bed occupancy and requirements forecasting

•**Collaborative partners:** Nanyang Technological University and Tan Tock Seng Hospital, Singapore.

•Approach: Markov modelling, reinforcement learning

•Data: Tan Tock Seng Hospital, Singapore.

Hospital bed occupancy and requirements forecasting

More info:

•Garg L, McClean SI, Meenan BJ, Millard PH (2010). A non-homogeneous discrete time Markov model for admission scheduling and resource planning in a care system. Health Care Management Science. 13(2):155–169.

•Garg L, McClean SI, Meenan BJ, Millard PH (2009). Non-homogeneous Markov Models for Sequential Pattern Mining of Healthcare Data. IMA journal Management Mathematics. 20(4): 327-344.

•Garg L, McClean SI, Meenan BJ, Barton M, Fullerton K (2012). Intelligent patient management and resource planning for complex, heterogeneous and stochastic healthcare systems. In press. IEEE Transactions on Systems, Man, and Cybernetics--Part A: Systems and Humans.